Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(OABC\) có ba cạnh \(OA,\,\,OB,\,\,OC\) đôi một vuông góc với nhau. Biết khoảng cách

Câu hỏi số 470095:
Vận dụng

Cho tứ diện \(OABC\) có ba cạnh \(OA,\,\,OB,\,\,OC\) đôi một vuông góc với nhau. Biết khoảng cách từ điểm \(O\) đến các đường thẳng \(BC,\,\,CA,\,\,AB\) lần lượt là \(a,\,\,a\sqrt 2 ,\,\,a\sqrt 3 \). Tính khoảng cách từ điểm \(O\) đến mặt phẳng \(\left( {ABC} \right)\) theo \(a\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:470095
Phương pháp giải

- Kẻ \(OM \bot AC\,\,\left( {M \in AC} \right)\), \(ON \bot AB\,\,\left( {N \in AB} \right)\), \(OP \bot BC\,\,\left( {P \in BC} \right)\). Khi đó ta có \(OP = a,\) \(OM = a\sqrt 2 ,\) \(ON = a\sqrt 3 \).

- Trong \(\left( {OCN} \right)\) kẻ \(OH \bot CN\,\,\left( {H \in CN} \right)\), chứng minh \(OH \bot \left( {ABC} \right)\).

- Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết

Kẻ \(OM \bot AC\,\,\left( {M \in AC} \right)\), \(ON \bot AB\,\,\left( {N \in AB} \right)\), \(OP \bot BC\,\,\left( {P \in BC} \right)\).

Khi đó ta có \(OP = a,\,\,OM = a\sqrt 2 ,\,\,ON = a\sqrt 3 \).

Trong \(\left( {OCN} \right)\) kẻ \(OH \bot CN\,\,\left( {H \in CN} \right)\) ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}AB \bot ON\\AB \bot OC\end{array} \right. \Rightarrow AB \bot \left( {OCN} \right) \Rightarrow AB \bot OH\\\left\{ \begin{array}{l}OH \bot AB\\OH \bot CN\end{array} \right. \Rightarrow OH \bot \left( {ABC} \right) \Rightarrow d\left( {O;\left( {ABC} \right)} \right) = OH\end{array}\)

Áp dụng hệ thức lượng trong tam giác vuông ta có: \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{C^2}}} + \dfrac{1}{{O{N^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}}\)

Lại có

\(\begin{array}{l}\dfrac{1}{{O{M^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{C^2}}};\,\,\dfrac{1}{{O{N^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}};\,\,\dfrac{1}{{O{P^2}}} = \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}}\\ \Rightarrow \dfrac{1}{{O{M^2}}} + \dfrac{1}{{O{N^2}}} + \dfrac{1}{{O{P^2}}} = 2\left( {\dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}}} \right)\\ \Rightarrow \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}} = \dfrac{1}{2}\left( {\dfrac{1}{{O{M^2}}} + \dfrac{1}{{O{N^2}}} + \dfrac{1}{{O{P^2}}}} \right)\\ \Rightarrow \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}} = \dfrac{1}{2}\left( {\dfrac{1}{{2{a^2}}} + \dfrac{1}{{3{a^2}}} + \dfrac{1}{{{a^2}}}} \right) = \dfrac{{11}}{{12{a^2}}}\\ \Rightarrow \dfrac{1}{{O{H^2}}} = \dfrac{{11}}{{12{a^2}}} \Rightarrow OH = \dfrac{{2a\sqrt {33} }}{{11}}\end{array}\)

Vậy \(d\left( {O;\left( {ABC} \right)} \right) = \dfrac{{2a\sqrt {33} }}{{11}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com