Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm các giới hạn sau:

Tìm các giới hạn sau:

Trả lời cho các câu 1, 2, 3, 4 dưới đây:

Câu hỏi số 1:
Vận dụng

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2x + 1}  - \sqrt[3]{{{x^2} + 1}}}}{{\sin x}}\)           

Đáp án đúng là: B

Câu hỏi:470538
Giải chi tiết

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2x + 1}  - \sqrt[3]{{{x^2} + 1}}}}{{\sin x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2x + 1}  - 1 + 1 - \sqrt[3]{{{x^2} + 1}}}}{{\sin x}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2x + 1}  - 1}}{{\sin x}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \sqrt[3]{{{x^2} + 1}}}}{{\sin x}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{2x + 1 - 1}}{{\sin x\left( {\sqrt {2x + 1}  + 1} \right)}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - {x^2} - 1}}{{\sin x\left( {1 + {x^2} + 1 + {{\sqrt[3]{{{x^2} + 1}}}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sin x}}.\dfrac{2}{{\sqrt {2x + 1}  + 1}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{ - x}}{{\sin x}}.\dfrac{x}{{1 + \sqrt[3]{{{x^2} + 1}} + {{\sqrt[3]{{{x^2} + 1}}}^2}}}\\ = 1.\dfrac{2}{{1 + 1}} - 1.\dfrac{0}{{1 + 1 + {1^2}}} = 1\end{array}\)

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + \tan x}  - \sqrt {1 + \sin x} }}{{{x^3}}}\)

Đáp án đúng là: A

Câu hỏi:470539
Giải chi tiết

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + \tan x}  - \sqrt {1 + \sin x} }}{{{x^3}}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + \tan x - 1 - \sin x}}{{{x^3}\left( {\sqrt {1 + \tan x}  + \sqrt {1 + \sin x} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sin x}}{{\cos x}} - \sin x}}{{{x^3}\left( {\sqrt {1 + \tan x}  + \sqrt {1 + \sin x} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x\left( {1 - \cos x} \right)}}{{{x^3}\left( {\sqrt {1 + \tan x}  + \sqrt {1 + \sin x} } \right)\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x.2{{\sin }^2}\dfrac{x}{2}}}{{{x^3}\left( {\sqrt {1 + \tan x}  + \sqrt {1 + \sin x} } \right)\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{2.\dfrac{{\sin x}}{x}.x.{{\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)}^2}.\dfrac{{{x^2}}}{4}}}{{{x^3}\left( {\sqrt {1 + \tan x}  + \sqrt {1 + \sin x} } \right)\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{1}{2}.\dfrac{{\sin x}}{x}.{{\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)}^2}}}{{\left( {\sqrt {1 + \tan x}  + \sqrt {1 + \sin x} } \right)\cos x}}\\ = \dfrac{{\dfrac{1}{2}.1.1}}{{\left( {1 + 1} \right).1}} = \dfrac{1}{4}\end{array}\)

Đáp án cần chọn là: A

Câu hỏi số 3:
Vận dụng

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x}  - \cos x - x}}{{{x^2}}}\)

Đáp án đúng là: C

Câu hỏi:470540
Giải chi tiết

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x}  - \cos x - x}}{{{x^2}}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x}  - \cos x - x}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x}  - x - 1 + 1 - \cos x}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x}  - \left( {x + 1} \right)}}{{{x^2}}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \cos x}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + 2x - {{\left( {x + 1} \right)}^2}}}{{{x^2}\left[ {\sqrt {1 + 2x}  + \left( {x + 1} \right)} \right]}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{ - 1}}{{\sqrt {1 + 2x}  + \left( {x + 1} \right)}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)}^2}.\dfrac{{{x^2}}}{4}}}{{{x^2}}}\\ = \dfrac{{ - 1}}{{\sqrt 1  + 1}} + \mathop {\lim }\limits_{x \to 0} \dfrac{1}{2}{\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2}\\ = \dfrac{{ - 1}}{2} + \dfrac{1}{2} = 0\end{array}\)

Đáp án cần chọn là: C

Câu hỏi số 4:
Vận dụng

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \sqrt[3]{{\cos x}}}}{{{{\tan }^2}x}}\)

Đáp án đúng là: C

Câu hỏi:470541
Giải chi tiết

\(\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \sqrt[3]{{\cos x}}}}{{{{\tan }^2}x}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \sqrt[3]{{\cos x}}}}{{{{\tan }^2}x}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 - \sqrt[3]{{\cos x}}} \right)\left( {1 + \sqrt[3]{{\cos x}} + {{\sqrt[3]{{\cos x}}}^2}} \right)}}{{{{\tan }^2}x\left( {1 + \sqrt[3]{{\cos x}} + {{\sqrt[3]{{\cos x}}}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 - \cos x} \right){{\cos }^2}x}}{{{{\sin }^2}x\left( {1 + \sqrt[3]{{\cos x}} + {{\sqrt[3]{{\cos x}}}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\sin }^2}\dfrac{x}{2}{{\cos }^2}x}}{{{{\sin }^2}x\left( {1 + \sqrt[3]{{\cos x}} + {{\sqrt[3]{{\cos x}}}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)}^2}.\dfrac{{{x^2}}}{4}{{\cos }^2}x}}{{{{\left( {\dfrac{{\sin x}}{x}} \right)}^2}.{x^2}\left( {1 + \sqrt[3]{{\cos x}} + {{\sqrt[3]{{\cos x}}}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{1}{2}{{\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)}^2}.{{\cos }^2}x}}{{{{\left( {\dfrac{{\sin x}}{x}} \right)}^2}.\left( {1 + \sqrt[3]{{\cos x}} + {{\sqrt[3]{{\cos x}}}^2}} \right)}}\\ = \dfrac{{\dfrac{1}{2}{1^2}.1}}{{{1^2}.\left( {1 + 1 + {1^2}} \right)}} = \dfrac{1}{6}\end{array}\)

Đáp án cần chọn là: C

Quảng cáo

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com