Một chiếc xe đua \({F_1}\) đạt tới vận tốc lớn nhất là \(360\,\,km/h\). Đồ thị bên biểu
Một chiếc xe đua \({F_1}\) đạt tới vận tốc lớn nhất là \(360\,\,km/h\). Đồ thị bên biểu thị vận tốc \(v\) của xe trong 5 giây đầu tiên kể từ lúc xuất phát. Đồ thị trong 2 giây đầu là một phần của một parabol định tại gốc tọa độ \(O\), giây tiếp theo là đoạn thẳng và sau đúng ba giây thì xe đạt vận tốc lớn nhất. Biết rằng mỗi đơn vị trục hoành biểu thị 1 giây, mỗi đơn vị trực tung biểu thị 10 m/s và trong 5 giây đầu xe chuyển động theo đường thẳng. Hỏi trong 5 giây đó xe đã đi được quãng đường là bao nhiêu?

Đáp án đúng là: D
Quảng cáo
- Tìm hàm vận tốc \(v\left( t \right)\) trên mỗi giai đoạn dựa vào đồ thị.
- Quãng đường vật đi được từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int\limits_a^b {v\left( t \right)dt} \).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












