Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập hợp các giá trị của tham số  \(m\)  để hàm số  \(y = 2{x^2} - mx + m\) đồng biến trên

Câu hỏi số 473969:
Thông hiểu

Tập hợp các giá trị của tham số  \(m\)  để hàm số  \(y = 2{x^2} - mx + m\) đồng biến trên khoảng  \(\left( {1; + \infty } \right)\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:473969
Phương pháp giải

- Hàm số \(y = a{x^2} + bx + c\,\,\left( {a > 0} \right)\) đồng biến trên \(\left( { - \dfrac{b}{{2a}}; + \infty } \right)\) và nghịch biến trên \(\left( { - \infty ; - \dfrac{b}{{2a}}} \right)\).

- Hàm số \(y = 2{x^2} - mx + m\) đồng biến trên \(\left( {\dfrac{m}{4}; + \infty } \right)\) nên để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) thì \(\left( {1; + \infty } \right) \subset \left( {\dfrac{m}{4}; + \infty } \right)\)

Giải chi tiết

Hàm số \(y = 2{x^2} - mx + m\) đồng biến trên \(\left( {\dfrac{m}{4}; + \infty } \right)\) nên để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) thì \(\left( {1; + \infty } \right) \subset \left( {\dfrac{m}{4}; + \infty } \right)\)

\( \Rightarrow \dfrac{m}{4} \le 1 \Leftrightarrow m \le 4\).

Vậy \(m \in \left( { - \infty ;4} \right]\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com