Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên mặt phẳng tọa độ\(Oxy\), cho tam giác \(ABC\) có tọa độ các đỉnh là \(A\left( {2;3}

Câu hỏi số 473972:
Vận dụng

Trên mặt phẳng tọa độ\(Oxy\), cho tam giác \(ABC\) có tọa độ các đỉnh là \(A\left( {2;3} \right),{\rm{ }}B\left( {5;0} \right)\) và \(C\left( { - 1;0} \right)\). Tìm tọa độ điểm \(M\) thuộc cạnh \(BC\) sao cho diện tích tam giác \(MAB\) bằng hai lần diện tích tam giác \(MAC\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:473972
Phương pháp giải

- Viết phương trình đường thẳng \(BC\), tham số hóa tọa độ điểm \(M \in BC\) theo tham số \(m\).

- Viết phương trình đường thẳng \(AM\) theo \(m\).

- Tính \(d\left( {B;AM} \right)\) và \(d\left( {C;AM} \right)\). Sử dụng công thức khoảng cách từ \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(ax + by + c = 0\) là \(d\left( {M;AB} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

- Để \({S_{\Delta MAB}} = 2{S_{\Delta MAC}} \Leftrightarrow d\left( {B;AM} \right) = 2d\left( {C;AM} \right)\), giải phương trình tìm \(m\).

Giải chi tiết

Phương trình đường thẳng \(BC\) là \(y = 0\), vì \(M \in BC\) nên gọi \(M\left( {m;0} \right)\).

Ta có: \(\overrightarrow {AM}  = \left( {m - 2; - 3} \right)\) nên \(\overrightarrow n  = \left( {3;m - 2} \right)\) là 1 VTPT của đường thẳng \(AM\).

Phương trình đường thẳng \(AM\) là:

\(\begin{array}{l}3\left( {x - 2} \right) + \left( {m - 2} \right)\left( {y - 3} \right) = 0\\ \Leftrightarrow 3x + \left( {m - 2} \right)y - 6 - 3m + 6 = 0\\ \Leftrightarrow 3x + \left( {m - 2} \right)y - 3m = 0\end{array}\)

\(\begin{array}{l} \Rightarrow d\left( {B;AM} \right) = \dfrac{{\left| {15 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}\\\,\,\,\,\,\,d\left( {C;AM} \right) = \dfrac{{\left| { - 3 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}\end{array}\)

Ta có: \(\left\{ \begin{array}{l}{S_{\Delta MAB}} = \dfrac{1}{2}d\left( {B;AM} \right).AM\\{S_{\Delta MAC}} = \dfrac{1}{2}d\left( {C;AM} \right).AM\end{array} \right. \Rightarrow {S_{\Delta MAB}} = 2{S_{\Delta MAC}} \Leftrightarrow d\left( {B;AM} \right) = 2d\left( {C;AM} \right)\).

\(\begin{array}{l} \Rightarrow \dfrac{{\left| {15 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }} = 2\dfrac{{\left| { - 3 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}\\ \Leftrightarrow \left| {15 - 3m} \right| = 2\left| { - 3 - 3m} \right|\\ \Leftrightarrow \left[ \begin{array}{l}15 - 3m =  - 6 - 6m\\15 - 3m = 6 + 6m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 7\\m = 1\end{array} \right.\end{array}\)

Vậy \(M\left( {1;0} \right)\) hoặc \(M\left( { - 7;0} \right)\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com