Trên mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( {{C_m}} \right):\,\,\,{x^2} + {y^2} - 6x - 2my +
Trên mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( {{C_m}} \right):\,\,\,{x^2} + {y^2} - 6x - 2my + 6m - 16 = 0\), với \(m\) là tham số thực. Khi \(m\) thay đổi, bán kính đường tròn \(\left( {{C_m}} \right)\) đạt giá trị nhỏ nhất bằng bao nhiêu?
Đáp án đúng là: C
Quảng cáo
- Đường tròn \(\left( C \right):\,\,{x^2} + {y^2} + 2ax + 2by + c = 0\) có bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).
- Đánh giá và suy ra GTNN của bán kính.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












