Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( {{C_m}} \right):\,\,\,{x^2} + {y^2} - 6x - 2my +

Câu hỏi số 473973:
Thông hiểu

Trên mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( {{C_m}} \right):\,\,\,{x^2} + {y^2} - 6x - 2my + 6m - 16 = 0\), với \(m\) là tham số thực. Khi \(m\) thay đổi, bán kính đường tròn \(\left( {{C_m}} \right)\) đạt giá trị nhỏ nhất bằng bao nhiêu?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:473973
Phương pháp giải

- Đường tròn \(\left( C \right):\,\,{x^2} + {y^2} + 2ax + 2by + c = 0\) có bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).

- Đánh giá và suy ra GTNN của bán kính.

Giải chi tiết

Bán kính đường tròn \(\left( {{C_m}} \right)\) là: \(R = \sqrt {9 + {m^2}}  \ge 3\).

Vậy giá trị nhỏ nhất của bán kính đường tròn \(\left( {{C_m}} \right)\) bằng 3 đạt được khi \(m = 0\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com