Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC{\rm{D}}\) có đáy \(ABC{\rm{D}}\) là hình bình hành. Gọi điểm \(M\) là điểm

Câu hỏi số 473978:
Thông hiểu

Cho hình chóp \(S.ABC{\rm{D}}\) có đáy \(ABC{\rm{D}}\) là hình bình hành. Gọi điểm \(M\) là điểm thuộc cạnh \(S{\rm{D}}\) sao cho \(SM = \dfrac{2}{3}SD\) (minh họa như hình vẽ). Mặt phẳng chứa \(AM\) và song song với \(B{\rm{D}}\) cắt cạnh \(SC\) tại \(K\). Tỷ số \(\dfrac{{SK}}{{SC}}\) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:473978
Phương pháp giải

- Xác định điểm \(K\).

- Sử dụng định lí Talets và định lí Menelaus trong tam giác \(SOC\) để tính tỉ số.

Giải chi tiết

Gọi mặt phẳng chứa \(AM\) và song song với \(BD\) là \(\left( \alpha  \right)\).

Trong \(\left( {SBD} \right)\) kẻ \(MN//BD\,\,\left( {N \in SB} \right)\), khi đó ta có \(\left( \alpha  \right) \equiv \left( {AMN} \right)\).

Gọi \(O = AC \cap BD\), trong \(\left( {SBD} \right)\) gọi \(\left\{ I \right\} = MN \cap SO\), trong \(\left( {SAC} \right)\) gọi \(K = AI \cap SC\) ta có:

\(\left\{ \begin{array}{l}K \in AI \subset \left( {AMN} \right)\\K \in SC\end{array} \right. \Rightarrow K = \left( {AMN} \right) \cap SC\) hay \(K = \left( \alpha  \right) \cap SC\).

Áp dụng định lí Talets ta có \(\dfrac{{SI}}{{SO}} = \dfrac{{SM}}{{SD}} = \dfrac{2}{3}\).

Áp dụng định lí Menelaus trong tam giác \(SOC\), cát tuyến \(AIK\) ta có:

\(\dfrac{{IS}}{{IO}}.\dfrac{{AO}}{{AC}}.\dfrac{{KC}}{{KS}} = 1 \Leftrightarrow 2.\dfrac{1}{2}.\dfrac{{KC}}{{KS}} = 1 \Leftrightarrow \dfrac{{KC}}{{KS}} = 1\) \( \Rightarrow \dfrac{{SK}}{{SC}} = \dfrac{1}{2}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com