Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Lấy \(M,\,N\) lần lượt là trung điểm
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Lấy \(M,\,N\) lần lượt là trung điểm các cạnh \(SB,\,SD;\,K\) là giao điểm của mặt phẳng \(\left( {AMN} \right)\) và \(SC.\) Gọi \({V_1}\) là thể tích của khối chóp \(S.AMKN\), \({V_2}\) là thể tích của khối đa diện lồi \(AMKNBCD\). Tính \(\dfrac{{{V_1}}}{{{V_2}}}.\)
Đáp án đúng là: A
Quảng cáo
- Xác định điểm \(K\).
- Sử dụng tỉ số thể tích.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













