Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Lấy \(M,\,N\) lần lượt là trung điểm

Câu hỏi số 473987:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Lấy \(M,\,N\) lần lượt là trung điểm các cạnh \(SB,\,SD;\,K\) là giao điểm của mặt phẳng \(\left( {AMN} \right)\) và \(SC.\) Gọi \({V_1}\) là thể tích của khối chóp \(S.AMKN\), \({V_2}\) là thể tích của khối đa diện lồi \(AMKNBCD\). Tính \(\dfrac{{{V_1}}}{{{V_2}}}.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:473987
Phương pháp giải

- Xác định điểm \(K\).

- Sử dụng tỉ số thể tích.

Giải chi tiết

Gọi \(O\) là giao điểm của \(AC,BD\) . Gọi \(I\) là giao điểm của \(SO;MN\) . Ta có \(I\) là trung điểm \(SO\) và \(AI\) giao với \(SC\) tại \(K\).

Gọi \(H\) là trung điểm \(CK\) thì \(OH//AK\) (đường trung bình) suy ra \(K\) là trung điểm \(SH \Rightarrow \dfrac{{SK}}{{SC}} = \dfrac{1}{3}\)

Ta có: \(\dfrac{{{V_1}}}{{{V_1} + {V_2}}} = \dfrac{{{V_{S.AMKN}}}}{{{V_{S.ABCD}}}} = \dfrac{{2{V_{S.AMK}}}}{{2{V_{S.ACD}}}} = \dfrac{{SM}}{{SD}}.\dfrac{{SK}}{{SC}} = \dfrac{1}{2}.\dfrac{1}{3} = \dfrac{1}{6}\) 

\( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{1}{5}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com