Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(m\) để bất phương trình \(\sqrt {x - {m^2} - m} \left( {3 - \dfrac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}}}

Câu hỏi số 474388:
Vận dụng cao

Tìm \(m\) để bất phương trình \(\sqrt {x - {m^2} - m} \left( {3 - \dfrac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}}} \right) < 0\,\,(*)\) có nghiệm .

Đáp án đúng là: C

Quảng cáo

Câu hỏi:474388
Phương pháp giải

Đưa về dạng tìm \(m\) để hệ bất phương trình có nghiệm (giải bất phương trình và lập bảng xét dấu).

Giải chi tiết

Ta có: \(\left( * \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 - \dfrac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}} > 0}\\{x > {m^2} + m}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\left( {x - 2} \right)\left( {3{x^2} + 3x - 4} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - 3} \right)}} < 0}\\{x > {m^2} + m}\end{array}} \right.\)  \(\left( {**} \right)\)

Bảng xét dấu:

Tập nghiệm của bất phương trình \(\dfrac{{\left( {x - 2} \right)\left( {3{x^2} + 3x - 4} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - 3} \right)}} < 0\) là\(S = \left( {\dfrac{{ - 3 - \sqrt {57} }}{6}; - \sqrt 3 } \right) \cup \left( {\dfrac{{ - 3 + \sqrt {57} }}{6};1} \right) \cup \left( {\sqrt 3 ;2} \right)\)

Do đó bất phương trình \(\left( * \right)\) có nghiệm khi và chỉ khi hệ bất phương trình\(\left( {**} \right)\) có nghiệm

\( \Leftrightarrow {m^2} + m < 2\)\( \Leftrightarrow {m^2} + m - 2 < 0\)\( \Leftrightarrow  - 2 < m < 1\)

Vậy \( - 2 < m < 1\) là giá trị cần tìm.

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com