Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho điểm \(A\left( {2; - 5; - 3} \right)\), mặt phẳng \(\left( \alpha

Câu hỏi số 495605:
Vận dụng cao

Trong không gian \(Oxyz\), cho điểm \(A\left( {2; - 5; - 3} \right)\), mặt phẳng \(\left( \alpha  \right):\,\,x - y - z + 2 = 0\) và mặt cầu \(\left( S \right):\,\,{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 8\). Biết rằng mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\). Tìm hoành độ của điểm \(M\) thuộc đường tròn \(\left( C \right)\) sao cho độ dài đoạn \(AM\) lớn nhất.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:495605
Giải chi tiết

Gọi \(M\left( {a + 2;\,\,b - 1;\,\,c + 1} \right)\), ta có \(\left\{ \begin{array}{l}M \in \left( \alpha  \right)\\M \in \left( S \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a - b - c + 4 = 0\,\,\,\left( 1 \right)\\{a^2} + {b^2} + {c^2} = 8\,\,\,\,\left( 2 \right)\end{array} \right.\).

Từ (1) \( \Rightarrow c = a - b + 4\), thế vào (2) ta có: \({a^2} + {b^2} + {\left( {a - b + 4} \right)^2} = 8\)

\( \Leftrightarrow 2{a^2} + 2{b^2} - 2ab + 8a - 8b = 0 \Leftrightarrow {b^2} - \left( {a + 4} \right)b + {a^2} + 4a + 4 = 0\)

Coi đây là phương trình bậc hai ẩn \(b\) với tham số \(a\), ta có:

\({\Delta _b} = {\left( {a + 4} \right)^2} - 4\left( {{a^2} + 4a + 4} \right) =  - 3{a^2} - 8a \le 0 \Leftrightarrow  - \dfrac{8}{3} \le a \le 0\).

Khi đó ta có:

\(\begin{array}{l}A{M^2} = {a^2} + {\left( {b + 4} \right)^2} + {\left( {c + 4} \right)^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = {a^2} + {b^2} + {c^2} + 8a + 8b + 32\\\,\,\,\,\,\,\,\,\,\,\,\,\, = 8 + 8b + 8c + 32\\\,\,\,\,\,\,\,\,\,\,\,\,\, = 8\left( {b + c + 5} \right) = 8\left( {a + 9} \right) \le 72\end{array}\)

Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a = 0\\{b^2} - 4b + 4 = 0\\a - b - c + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\\c = 2\end{array} \right.\).

Vậy \(A{M_{\max }} \Leftrightarrow M\left( {2;1;3} \right)\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com