Cắt hình nón \(\left( \aleph \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng
Cắt hình nón \(\left( \aleph \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng \({60^o}\), ta được thiết diện là tam giác đều cạnh \(2a.\) Diện tích xung quanh của \(\left( \aleph \right)\) bằng
Đáp án đúng là: A
Quảng cáo
Áp dụng phương pháp xác định góc giữa hai mặt phẳng để xác định góc giữa đáy và mặt phẳng qua đỉnh.
Từ đó tìm được mối quan hệ giữa chiều cao của hình nón và bán kính đáy.
Biến đổi, tính toán để tìm được bán kính đáy.
Áp dụng công thức tính diện tích xung quanh nón: \({S_{xq}} = \pi rl.\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













