Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cắt hình nón \(\left( \aleph  \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng

Câu hỏi số 499845:
Vận dụng

Cắt hình nón \(\left( \aleph  \right)\) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng \({60^o}\), ta được thiết diện là tam giác đều cạnh \(2a.\) Diện tích xung quanh của \(\left( \aleph  \right)\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:499845
Phương pháp giải

Áp dụng phương pháp xác định góc giữa hai mặt phẳng để xác định góc giữa đáy và mặt phẳng qua đỉnh.

Từ đó tìm được mối quan hệ giữa chiều cao của hình nón và bán kính đáy.

Biến đổi, tính toán để tìm được bán kính đáy.

Áp dụng công thức tính diện tích xung quanh nón: \({S_{xq}} = \pi rl.\)

Giải chi tiết

Gọi mặt phẳng đi qua đỉnh của hình nón là \(\left( {SAB} \right)\).

Do thiết diện của \(\left( {SAB} \right)\) và hình nón là tam giác đều cạnh \(2a\) nên \(SA = AB = AB = 2a\)

Kẻ \(OH \bot AB\). Nối \(S\) với \(H.\)

Khi đó \(H\) là trung điểm \(AB\) nên \(SH = a\sqrt 3 \)

Ta có: góc giữa \(\left( {SAB} \right)\) và mặt đáy là \(\angle SHO\)

Trong tam giác \(SHO\) vuông tại \(O\) ta có: \(\tan SHO = \dfrac{{SO}}{{OH}}\)\( \Rightarrow \tan {60^o} = \dfrac{{SO}}{{OH}} \Rightarrow SO = \sqrt 3 .OH\)

Theo định lí py-ta-go ta có: \(S{O^2} + O{H^2} = S{H^2}\)\( \Rightarrow 4O{H^2} = S{H^2} \Rightarrow OH = \dfrac{1}{2}SH = \dfrac{{a\sqrt 3 }}{2}\)

\( \Rightarrow SO = \dfrac{{3a}}{2}\)\( \Rightarrow OA = \sqrt {S{A^2} - S{O^2}}  = \sqrt {4{a^2} - \dfrac{{9{a^2}}}{4}}  = \dfrac{{a\sqrt 7 }}{2}\)

Diện tích xung quanh của hình nón: \({S_{xq}} = \pi .\dfrac{{a\sqrt 7 }}{2}.2a = \pi \sqrt 7 {a^2}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com