Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 8} \right)\left( {{x^2} - 9}

Câu hỏi số 499847:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 8} \right)\left( {{x^2} - 9} \right),\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {\left| {{x^3} + 6x} \right| + m} \right)\) có ít nhất \(3\) điểm cực trị?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:499847
Phương pháp giải

Lập bảng biến thiên của hàm số \(h\left( x \right) = \left| {{x^3} + 6x} \right|\)

Tính đạo hàm \(g'\left( x \right)\) và tìm nghiệm của phương trình \(g'\left( x \right) = 0\)

Từ đó tìm mối liên hệ về tương giao giữa đồ thị hàm số \(f'\left( x \right),\,g'\left( x \right)\) và \(h'\left( x \right)\) để tìm được số giá trị \(m\) thỏa mãn.

Giải chi tiết

Bảng biến thiên của \(h\left( x \right) = \left| {{x^3} + 6x} \right|\)

Xét \(g\left( x \right) = f\left( {\left| {{x^3} + 6x} \right| + m} \right)\). Ta có: \(g'\left( x \right) = \left( {\left| {{x^3} + 6x} \right|} \right)'.f'\left( {\left| {{x^3} + 6x} \right| + m} \right) = \left( {h\left( x \right)} \right)'.f'\left( {\left| {{x^3} + 6x} \right| + m} \right)\)

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}h'\left( x \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\f'\left( {\left| {{x^3} + 6x} \right| + m} \right) = 0\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ BBT của \(h\left( x \right) \Rightarrow h'\left( x \right) = 0\) chỉ chứa \(1\) nghiệm \(x = 0\) là điểm cực trị của \(h\left( x \right).\)

Do đó phương trình \(\left( 1 \right)\) có \(x = 0\) là nghiệm bội lẻ.

\(f'\left( x \right) = \left( {x - 8} \right)\left( {{x^2} - 9} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 8\\x = 3\\x =  - 3\end{array} \right.\)

Phương trình \(\left( 2 \right)\) \( \Leftrightarrow \left[ \begin{array}{l}\left| {{x^3} + 6x} \right| + m = 8\\\left| {{x^3} + 6x} \right| + m =  - 3\\\left| {{x^3} + 6x} \right| + m = 3\end{array} \right.\)

Ta có bảng biến thiên:

Để hàm số \(g\left( x \right)\) có ít nhất \(3\) điểm cực trị thì ít nhất \(1\) trong \(3\) đường thẳng \(y = 8,\,y = 3,\,y =  - 3\) phải cắt \(\left( {\left| {{x^3} + 6x} \right| + m} \right)\) tại \(2\) điểm phân biệt (\(2\) nghiệm bội lẻ khác \(0\)).

\( \Leftrightarrow m < 8\). Có tất cả \(7\) giá trị \(m\) thỏa mãn.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com