Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right)

Câu hỏi số 509202:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right).g\left( x \right) + 2018\), trong đó \(g\left( x \right) < 0\,\,\forall x \in \mathbb{R}\). Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) đồng biến trên khoảng nào?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:509202
Phương pháp giải

Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) đồng biến khi và chỉ khi \(y' =  - f'\left( {1 - x} \right) + 2018 > 0\)

Giải chi tiết

\(y' =  - f'\left( {1 - x} \right) + 2018 > 0\)

\( \Leftrightarrow  - \left[ {x\left( {3 - x} \right).g\left( {1 - x} \right) + 2018} \right] + 2018 > 0\)

\( \Leftrightarrow x\left( {3 - x} \right)g\left( {1 - x} \right) < 0\,\,\,\left( 1 \right)\)

Mà \(g\left( x \right) < 0\,\,\forall x \in \mathbb{R} \Rightarrow g\left( {1 - x} \right) < 0\)

\(\left( 1 \right) \Leftrightarrow x\left( {3 - x} \right) > 0 \Leftrightarrow 0 < x < 3\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com