Cho đường tròn \(\left( {O;3cm} \right)\) và điểm \(M\) sao cho \(OM = 6cm\). Từ điểm \(M\) kẻ hai
Cho đường tròn \(\left( {O;3cm} \right)\) và điểm \(M\) sao cho \(OM = 6cm\). Từ điểm \(M\) kẻ hai tiếp tuyến \(MA\) và \(MB\) đến đường tròn \(\left( O \right)\) (\(A\) và \(B\) là các tiếp điểm). Trên đoạn thẳng \(OA\) lấy điểm \(D\) (\(D\) khác \(A\) và \(O\)), dựng đường thẳng vuông góc với \(OA\) tại \(D\) và cắt \(MB\) tại \(E\).
a) Chứng minh tứ giác \(ODEB\) nội tiếp đường tròn.
b) Tứ giác \(ADEM\) là hình gì? Vì sao?
c) Gọi \(K\) là giao điểm của đường thẳng \(MO\) và \(\left( O \right)\) sao cho \(O\) nằm giữa điểm \(M\) và \(K\). Chứng minh tứ giác \(AMBK\) là hình thoi.
Quảng cáo
a) Áp dụng dấu hiệu nhận biết của tứ giác nội tiếp: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.
b) Vận dụng quan hê từ vuông góc đến song song, suy ra \(AM//DE\).
Lại có \(\angle DAM = \angle ADE = {90^0}\), nên \(ADEM\) là hình thang vuông.
c) Gọi \(\left\{ H \right\} = AB \cap OM\).
Vận dụng kiến thức về đường trung trực, hệ thức lượng trong tam giác vuông, mối quan hệ góc – đường tròn
Vận dụng định nghĩa hình thoi để chứng minh \(AMBK\) là hình thoi.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











