Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(\sqrt 3 \sin x + \cos x =  - 1\) tương đương với phương trình nào sau đây?

Câu hỏi số 512887:
Thông hiểu

Phương trình \(\sqrt 3 \sin x + \cos x =  - 1\) tương đương với phương trình nào sau đây?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:512887
Phương pháp giải

Sử dụng cách giải phương trình bậc nhất đối với \(\sin \,x,\,\cos x\): \(a\,\sin \,x + b\cos x = c\).

Chia cả hai vế của phương trình cho \(\sqrt {{a^2} + {b^2}} \), đưa về dạng \(\sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right)\).

Giải chi tiết

Ta có:

\(\begin{array}{l}\sqrt 3 \sin \,x + \cos x =  - 1\\ \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin \,x + \dfrac{1}{2}\cos x =  - \dfrac{1}{2}\\ \Leftrightarrow \sin \,x.cos\dfrac{\pi }{6} + \cos x.\sin \dfrac{\pi }{6} =  - \dfrac{1}{2}\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{6}} \right) =  - \dfrac{1}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\x + \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com