Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) và mặt bên \(SAB\) là tam giác đều và
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) và mặt bên \(SAB\) là tam giác đều và vuông góc với đáy. Điểm \(M\) là trung điểm của \(CD.\) Khoảng cách giữa \(2\) đường thẳng \(SM\) và \(BD\) bằng

Đáp án đúng là: A
Quảng cáo
\(d\left( {SM,BD} \right) = d\left( {BD,\left( {SMN} \right)} \right)\) với \(N\) là trung điểm của \(BC.\)
\(d\left( {BD,\left( {SMN} \right)} \right) = d\left( {O,\left( {SMN} \right)} \right)\)
Sử dụng phương pháp tỉ lệ khoảng cách.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













