Cho \(P = \left( {\dfrac{{b - a}}{{\sqrt b - \sqrt a }} - \dfrac{{a\sqrt a - b\sqrt b }}{{a - b}}}
Cho \(P = \left( {\dfrac{{b - a}}{{\sqrt b - \sqrt a }} - \dfrac{{a\sqrt a - b\sqrt b }}{{a - b}}} \right):\dfrac{{{{\left( {\sqrt b - \sqrt a } \right)}^2} + \sqrt {ab} }}{{\sqrt a + \sqrt b }}\,\,\,\,\,\,\,\,\,\left( {a \ge 0,\,\,b \ge 0,\,\,a \ne b} \right).\)
a) Rút gọn \(P.\)
b) Chứng minh rằng \(P \ge 0.\)
Quảng cáo
a) Xác định mẫu thức chung của biểu thức \(P\)
Thực hiện các phép toán với các phân thức đại số
b) Từ hằng đẳng thức \({\left( {\sqrt a - \sqrt b } \right)^2} \ge 0\) chứng minh được \(a + b - \sqrt {ab} > 0\)
Dựa vào điều kiện của biểu thức \(P\) chứng minh được \(\sqrt {ab} \ge 0\)
Từ đó có điều phải chứng minh.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










