Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f(x)\) là hàm số bậc bốn, có đạo hàm \(y' = 8{x^3}\). Hàm số đã cho đồng

Câu hỏi số 529581:
Thông hiểu

Cho hàm số \(y = f(x)\) là hàm số bậc bốn, có đạo hàm \(y' = 8{x^3}\). Hàm số đã cho đồng biến trên khoảng nào?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:529581
Phương pháp giải

- Sử dụng chức năng MENU \(8\) để loại trừ đáp án.

- Hàm số \(y = f\left( x \right)\)  đồng biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\;\;\forall x \in \left( {a;\;b} \right).\)

Giải chi tiết

MENU \(8\)

A.

Bắt đầu: \( - 20\)

Kết thúc: \(1\)

Bước nhảy: \(\left( {1 - \left( { - 20} \right)} \right):40\)

Bảng giá trị:

Loại đáp án A.

B.

Bắt đầu: \(0\)

Kết thúc: \(20\)

Bước nhảy: \(\left( {20 - 0} \right):40\)

Bảng giá trị:

\( \Rightarrow y' > 0{\rm{ }}\forall x \in \left( {0; + \infty } \right)\)\( \Rightarrow \)Hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

C. Vì \(\left( { - \infty ;1} \right) \subset \left( { - \infty ; + \infty } \right)\).

Loại đáp án C.

D. Vì \(\left( { - \infty ;1} \right) \subset \left( { - \infty ;0} \right)\).

Loại đáp án D.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com