Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \dfrac{m}{3}{x^3} - 2m{x^2} +
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \dfrac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}\).
Đáp án đúng là: A
Quảng cáo
+ Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0;\forall x \in \mathbb{R}\)
+ Xét 2 TH: \(m = 0;m \ne 0\)
+ Đạo hàm
+ Áp dụng hàm số: \(y = a{x^2} + bx + c > 0;\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right.\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












