Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(A.\) \(AB = a,\,\angle SBA = \angle SCA =

Câu hỏi số 531423:
Vận dụng

Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(A.\) \(AB = a,\,\angle SBA = \angle SCA = {90^o}.\) Góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\)là \({60^o}\).  Thể tích khối chóp đã cho bằng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:531423
Phương pháp giải

Xác định góc giữa hai mặt phẳng: dựng \(BH \bot SA \Rightarrow CH \bot SA\) và \(BH = CH\)\( \Rightarrow \left( {\left( {SAB} \right),\left( {SAC} \right)} \right) = \left( {BH,CH} \right)\)

Lập luận, chỉ ra \(\angle BHC = {120^o} \Rightarrow \Delta BHC\) cân tại đỉnh \(H\)

Giải chi tiết

Ta có: \(\Delta SAB = \Delta SAC\) (cạnh huyền – cạnh góc vuông)

Trong tam giác \(SAB,\) dựng \(BH \bot SA \Rightarrow CH \bot SA\) và \(BH = CH\)

\( \Rightarrow \left( {\left( {SAB} \right),\left( {SAC} \right)} \right) = \left( {BH,CH} \right)\)

Nếu \(\angle BHC = {90^o} \Rightarrow \Delta BHC\) vuông cân tại đỉnh \(H\) suy ra \(H{B^2} + H{C^2} = B{C^2} = A{B^2} + A{C^2} = 2{a^2} \Rightarrow HB = a\sqrt 2  > a = BA\)

Trong tam giác \(SAB\) có đường cao > cạnh góc vuông (vô lý)

Vậy \(\angle BHC = {120^o} \Rightarrow \Delta BHC\) cân tại đỉnh \(H\)

\(B{C^2} = B{H^2} + C{H^2} - 2BH.CH.\cos \angle BHC\)

\( \Rightarrow 2{a^2} = 2BH\left( {1 - \,cos{{120}^o}} \right) \Rightarrow B{H^2} = \dfrac{{2{a^2}}}{3} \Rightarrow BH = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }}\)

Tam giác \(BHA\) vuông tại đỉnh \(B,\,BH \bot SA:\,A{B^2} = AH.SA\)

\( \Leftrightarrow {a^2} = \dfrac{a}{{\sqrt 3 }}.SA \Rightarrow SA = a\sqrt 3 \)

Ta có: \(SH \bot BH,\,SH \bot CH\, \Rightarrow SH \bot \left( {BHC} \right)\)

\(AH \bot BH,\,AH \bot CH\, \Rightarrow AH \bot \,\left( {BHC} \right)\)

\( \Rightarrow {V_{SABC}} = {V_{SBHC}} + {V_{ABHC}} = \dfrac{1}{3}SH.{S_{BHC}} + \dfrac{1}{3}AH.{S_{BHC}}\)

\( = \dfrac{1}{3}{S_{BHC}}.\left( {SH + AH} \right) = \dfrac{1}{3}{S_{BHC}}.SA = \dfrac{1}{3}.\dfrac{1}{2}.\dfrac{{a\sqrt 2 }}{{\sqrt 3 }}.\dfrac{{a\sqrt 2 }}{{\sqrt 3 }}.\sin {120^o}.a\sqrt 3  = \dfrac{{{a^3}}}{6}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com