Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(\left( d \right):\,\,y = 2mx - {m^2} + 1\) và parabol

Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(\left( d \right):\,\,y = 2mx - {m^2} + 1\) và parabol \(\left( P \right):\,\,y = {x^2}.\)

Trả lời cho các câu 540305, 540306 dưới đây:

Câu hỏi số 1:
Vận dụng

Chứng minh \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

Câu hỏi:540306
Phương pháp giải
Hai đồ thị hàm số cắt nhau tại hai điểm phân biệt \( \Leftrightarrow \) phương trình hoành độ giao điểm có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)
Giải chi tiết

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\) ta có

\({x^2} = 2mx - {m^2} + 1 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0\,\,\left( * \right)\)

Số giao điểm của (d) và (P) cũng chính là số nghiệm của phương trình (*)

Phương trình \(\left( * \right)\) có \(\Delta ' = {m^2} - \left( {{m^2} - 1} \right) = 1 > 0\)

Vì \(\Delta ' > 0\) nên phương trình \(\left( * \right)\) luôn có hai nghiệm phân biệt với mọi \(m\) hay đường thẳng \(\left( d \right)\) luôn cắt parabol \(\left( P \right)\) tại hai điểm phân biệt.

Câu hỏi số 2:
Vận dụng

Tìm tất cả các giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) thỏa mãn \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + 1.\)

Câu hỏi:540307
Phương pháp giải
Sử dụng định lý Vi-et.
Giải chi tiết

Theo câu a) ta có đường thẳng \(\left( d \right)\) luôn cắt parabol \(\left( P \right)\) tại hai điểm phân biệt.

Gọi \({x_1};{x_2}\) là hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) thì \({x_1};{x_2}\) là hai nghiệm của phương trình \(\left( * \right)\)

Theo hệ thức Vi-et ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = {m^2} - 1\end{array} \right.\)

Xét \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + 1\)     (ĐK: \({x_1}{x_2} \ne 0 \Leftrightarrow {m^2} - 1 \ne 0 \Leftrightarrow m \ne  \pm 1\) )

\( \Leftrightarrow \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + \frac{{{x_1}{x_2}}}{{{x_1}{x_2}}}\)

\(\begin{array}{l} \Rightarrow {x_1} + {x_2} =  - 2 + {x_1}{x_2}\\ \Leftrightarrow 2m =  - 2 + {m^2} - 1\\ \Leftrightarrow {m^2} - 2m - 3 = 0\\ \Leftrightarrow {m^2} - 3m + m - 3 = 0\\ \Leftrightarrow m\left( {m - 3} \right) + \left( {m - 3} \right) = 0\\ \Leftrightarrow \left( {m + 1} \right)\left( {m - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 1 = 0\\m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\,\,\,\,\,\left( {ktm} \right)\\m = 3\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(m = 3\) là giá trị thỏa mãn điều kiện đề bài.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com