Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng

Chứng minh tứ giác BHEK là tứ giác nội tiếp.

Câu hỏi:540446
Phương pháp giải
Giải chi tiết

Ta có:

\(\angle BHE = {90^0}\) (do \(EH \bot AB\))

\(\angle BKE = {90^0}\) (do \(EK \bot BC\))

Tứ giác \(BHEK\) có \(\angle BHE + \angle BKE = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\)) (đpcm)

Câu hỏi số 2:
Vận dụng

Chứng minh \(BH.BA = BK.BC\).

Câu hỏi:540447
Phương pháp giải
Giải chi tiết

Theo câu a) tứ giác \(BHEK\) nội tiếp nên \(\angle BKH = \angle BEH\) (cùng chắn cung \(BH\))

Ta có:

\(\angle BEH + \angle EBH = {90^0}\) (do tam giác \(BHE\) vuông tại \(H\)).

\(\angle BAE + \angle EBH = {90^0}\) (do tam giác \(ABE\) vuông tại \(E\)).

Nên \(\angle BEH = \angle BAE\) (cùng phụ với \(\angle EBH\)).

Mà \(\angle BKH = \angle BEH\) (cmt) nên \(\angle BKH = \angle BAE\,\,\,\left( { = \angle BEH} \right)\).

Xét \(\Delta BHK\) và \(\Delta BCA\) có:

\(\angle ABC\) chung

\(\angle BKH = \angle BAE = \angle BAC\) (cmt)

\( \Rightarrow \Delta BHK \sim \Delta BCA\,\,\left( {g.g} \right)\)

\( \Rightarrow \dfrac{{BH}}{{BC}} = \dfrac{{BK}}{{BA}}\) (hai cạnh tương ứng)

\( \Rightarrow BH.BA = BK.BC\) (đpcm).

Câu hỏi số 3:
Vận dụng

Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.

Câu hỏi:540448
Phương pháp giải
Giải chi tiết

Cách 1:

Nối \(H\) và \(K.\)

Xét \(\Delta BHK\) và \(\Delta BCA\) ta có:

\(\begin{array}{l}\angle ABC\,\,\,\,chung\\\dfrac{{BH}}{{BC}} = \dfrac{{BK}}{{BA}}\,\,\,\left( {do\,\,\,BA.BA = BK.BC} \right)\\ \Rightarrow \Delta BHK \sim \Delta BCA\,\,\,\,\left( {c - g - c} \right)\end{array}\)

\( \Rightarrow \angle BHK \sim \angle BCA\) (hai góc tương ứng) (1)

Xét tứ giác \(BFEC\) ta có:

\(\angle BFC = \angle BEC = {90^0}\)

Mà \(F,\,\,E\) là hai đỉnh kề nhau

\( \Rightarrow BFEC\) là tứ giác nội tiếp (dhnb).

\( \Rightarrow \angle BCE + \angle BFE = {180^0}\) (tính chất tứ giác nội tiếp).

Mà \(\angle AFE + \angle BFE = {180^0}\) (2 góc kề bù)

\( \Rightarrow \angle BCE = \angle AFE\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có: \(\angle BHK = \angle HFI.\)

Ta có: \(\Delta FHE\) vuông tại \(H\) có \(HI\) là đường trung tuyến ứng với cạnh huyền

\( \Rightarrow HI = \dfrac{1}{2}EF\) (tính chất đường trung tuyến ừng với cạnh huyền).

\( \Leftrightarrow HI = FI\)

\( \Rightarrow \Delta HIF\) cân tại \(I\) (dhnb \(\Delta \) cân)

\( \Rightarrow \angle FHI = \angle HFI\) (tính chất \(\Delta \) cân)

Mà \(\angle HFI = \angle BHK\)

\( \Rightarrow \angle FHI = \angle BHK\) \( \Rightarrow HI \equiv HK\)

\( \Rightarrow H,\,\,I,\,\,K\) thẳng hàng.

Cách 2:

Gọi \(I'\) là giao điểm của HK và EF.

Xét tứ giác \(BFEC\) có: \(\angle BFC = \angle BEC = {90^0}\,\,\left( {gt} \right)\) nên là tứ giác nội tiếp (tứ giác có hai đỉnh kề nhau cùng nhìn 1 cạnh các góc bằng nhau).

\( \Rightarrow \angle {B_1} = \angle {F_1}\) (hai góc nội tiếp cùng chắn cung \(EC\)).

Ta có: \(EH//CF\) (cùng vuông góc \(AB\))

\( \Rightarrow \angle {F_1} = \angle {E_1}\) (so le trong)

Do đó \(\angle {B_1} = \angle {E_1}\) (1).

Theo câu a, tứ giác \(BHEK\) nội tiếp nên \(\angle {B_1} = \angle {H_1}\) (hai góc nội tiếp cùng chắn cung \(EK\)) (2).

Từ (1) và (2) suy ra \(\angle {H_1} = \angle {E_1}\)

Tam giác \(I'HE\) có \(\angle {H_1} = \angle {E_1}\) nên là tam giác cân (định nghĩa).

\( \Rightarrow I'H = I'E\) (tính chất tam giác cân)  (3)

Lại có:

\(\angle {H_1} + \angle {H_2} = \angle BHE = {90^0}\)

\(\angle {F_2} + \angle {E_1} = {90^0}\) (do tam giác \(HEF\) vuông tại \(H\)).

Nên \(\angle {H_2} = \angle {F_2}\) hay tam giác \(I'HF\)  cân tại \(I'\) (định nghĩa).

\( \Rightarrow I'H = I'F\) (tính chất tam giác cân)  (4)

Từ (3) và (4) suy ra \(I'E = I'F\) hay \(I'\) là trung điểm của \(EF\).

Do đó \(I' \equiv I\) nên ba điểm \(H,I,K\) thẳng hàng (đpcm).

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com