Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} - 2x + m - 3 = 0\,\,\left( 1 \right)\) (ẩn \(x\), tham số \(m\))

Cho phương trình \({x^2} - 2x + m - 3 = 0\,\,\left( 1 \right)\) (ẩn \(x\), tham số \(m\))

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Giải phương trình \(\left( 1 \right)\) khi \(m =  - 5\).

Đáp án đúng là: B

Câu hỏi:541799
Phương pháp giải

a) Thay \(m =  - 5\), thay vào \(\left( 1 \right)\), biến đổi phương trình về dạng tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Giải chi tiết

a) Với \(m =  - 5\), thay vào \(\left( 1 \right)\), ta được:

\(\begin{array}{l}\,\,\,\,\,\,{x^2} - 2x + \left( { - 5} \right) - 3 = 0\,\\ \Leftrightarrow {x^2} - 2x - 8 = 0\\ \Leftrightarrow {x^2} + 2x - 4x - 8 = 0\\ \Leftrightarrow x\left( {x + 2} \right) - 4\left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 4 = 0\\x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 2\end{array} \right.\end{array}\)

Vậy \(m =  - 5\) thì phương trình đã cho có tập nghiệm: \(S = \left\{ { - 2;\,\,4} \right\}.\)

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

Tìm \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(x_1^2 + 4{x_1}{x_2} + 3x_2^2 = 0\).

Đáp án đúng là: A

Câu hỏi:541800
Phương pháp giải

b) Phương trình  \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\) \( \Leftrightarrow \Delta ' > 0\)

Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}{x_2}\)

Từ phương trình: \(x_1^2 + 4{x_1}{x_2} + 3x_2^2 = 0\), tìm được mối quan hệ của \({x_1}\) và \({x_2}\)

Chia từng trường hợp, tìm được \(m\).

Giải chi tiết

b) Xét phương trình: \({x^2} - 2x + m - 3 = 0\,\,\left( 1 \right)\)

Phương trình  \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\) \( \Leftrightarrow \Delta ' > 0\)

      \(\begin{array}{l} \Leftrightarrow {\left( { - 1} \right)^2} - \left( {m - 3} \right) > 0\\ \Leftrightarrow 1 - m + 3 > 0\\ \Leftrightarrow 4 - m > 0\\ \Leftrightarrow m < 4\end{array}\)

Vậy với \(m < 4\) phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo hệ thức Vi – ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\,\,\,\,\,\,\,\left( 2 \right)\\{x_1}.{x_2} = m - 3\,\,\,\left( 3 \right)\end{array} \right.\)

Theo đề bài ta có:

\(\begin{array}{l}\,\,\,\,x_1^2 + 4{x_1}{x_2} + 3x_2^2 = 0\\ \Leftrightarrow \left( {x_1^2 + 4{x_1}{x_2} + 4x_2^2} \right) - x_2^2 = 0\\ \Leftrightarrow {\left( {{x_1} + 2{x_2}} \right)^2} - x_2^2 = 0\\ \Leftrightarrow \left( {{x_1} + 2{x_2} - {x_2}} \right)\left( {{x_1} + 2{x_2} + {x_2}} \right) = 0\\ \Leftrightarrow \left( {{x_1} + {x_2}} \right)\left( {{x_1} + 3{x_2}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x_1} + {x_2} = 0\\{x_1} + 3{x_2} = 0\end{array} \right.\end{array}\)

TH1: \({x_1} + {x_2} = 0\)

Kết hợp với phương trình \(\left( 2 \right)\) ta được hệ phương trình:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 0\\{x_1} + {x_2} = 2\end{array} \right. \Rightarrow \) hệ phương trình vô nghiệm.

TH2: \({x_1} + 3{x_2} = 0\)

Kết hợp với (2) ta có hệ phương trình \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\,\,\,\,\,\,\,\,\\\,{x_1} + 3{x_2} = 0\,\,\,\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = 3\\{x_2} =  - 1\end{array} \right.\)

Thay \({x_1} = 3,{x_2} =  - 1\) vào (3), ta được:

\(\begin{array}{l}\,\,\,\,\,3.\left( { - 1} \right) = m - 3\\ \Leftrightarrow m - 3 =  - 3\\ \Leftrightarrow m = 0\,\,\,\,\,\left( {tm} \right)\end{array}\)

Vậy với \(m = 0\) thỏa mãn yêu cầu đề bài.

Đáp án cần chọn là: A

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com