Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho S là tập nghiệm của bất phương trình \({\log _5}\left( {{x^2} + 2x + 3} \right) > {\log _5}\left(

Câu hỏi số 543191:
Vận dụng cao

Cho S là tập nghiệm của bất phương trình \({\log _5}\left( {{x^2} + 2x + 3} \right) > {\log _5}\left( {{x^2} + 4x + 2 + m} \right) - 1\). Số giá trị nguyên của tham số m để \(\left( {1;2} \right) \subset S\) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:543191
Phương pháp giải

Bước 1: Tìm điều kiện xác định

Bước 2: Sử dụng phương pháp đưa về cùng cơ số và tìm điều kiện của m.

Bước 3: Dựa vào điều kiện nguyên của m và \(\left( {1;2} \right) \subset S\) tìm m.

Giải chi tiết

Bước 1: Điều kiện \({x^2} + 4x + 2 + m > 0\)

Bước 2:  Ta có:

\(\begin{array}{l}{\log _5}\left( {{x^2} + 2x + 3} \right) > {\log _5}\left( {{x^2} + 4x + 2 + m} \right) - 1\\ \Leftrightarrow {\log _5}\left( {{x^2} + 2x + 3} \right) + {\log _5}5 > {\log _5}\left( {{x^2} + 4x + 2 + m} \right)\\ \Leftrightarrow {\log _5}\left[ {5\left( {{x^2} + 2x + 3} \right)} \right] > {\log _5}\left( {{x^2} + 4x + 2 + m} \right)\\ \Leftrightarrow 5\left( {{x^2} + 2x + 3} \right) > {x^2} + 4x + 2 + m\\ \Leftrightarrow 4{x^2} + 6x + 13 - m > 0\end{array}\)

Bước 3: Vì \(\left( {1;2} \right) \subset S\) nên bài toán trở thành tìm m nguyên để hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 4x + 2 + m > 0\\4{x^2} + 6x + 13 - m > 0\end{array} \right.\) nghiệm đúng với mọi \(x \in \left( {1;2} \right)\)

Tương đương với hai bất phương trình: \({x^2} + 4x + 2 + m > 0\) nghiệm đúng với mọi \(x \in \left( {1;2} \right)\) và bất phương trình \(4{x^2} + 6x + 13 - m > 0\) nghiệm đúng với mọi \(x \in \left( {1;2} \right)\)

Ta xét \({x^2} + 4x + 2 + m > 0\) nghiệm đúng với mọi \(x \in \left( {1;2} \right)\)

\( \Leftrightarrow m >  - {x^2} - 4x - 2\forall x \in \left( {1;2} \right)\)

\( \Leftrightarrow m > \mathop {\max }\limits_{\left[ {1;2} \right]} \left( { - {x^2} - 4x - 2} \right)\)

\( \Leftrightarrow m >  - 7\)

Tương tự với \(4{x^2} + 6x + 13 - m > 0\) nghiệm đúng với mọi \(x \in \left( {1;2} \right)\)

Ta có \(m < 4{x^2} + 6x + 13\forall x \in \left( {1;2} \right)\)

\(\begin{array}{l} \Leftrightarrow m < \mathop {\min }\limits_{\left[ {1;2} \right]} \left( {4{x^2} + 6x + 13} \right)\\ \Leftrightarrow m < 23\end{array}\)

Vậy \( - 7 < m < 23\)

Vì m nguyên nên m là các số nguyên thỏa mãn \( - 6 \le m \le 22\), tức là có \(22 - \left( { - 6} \right) + 1 = 29\) giá trị của m thỏa mãn bài toán.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com