Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 3}}\) là đường thằng có phương

Câu hỏi số 543583:
Nhận biết

Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 3}}\) là đường thằng có phương trình

Đáp án đúng là: B

Quảng cáo

Câu hỏi:543583
Phương pháp giải

Sử dụng khái niệm đường tiệm cận của đồ thị hàm số: Cho hàm số \(y = f\left( x \right)\):

- Đường thẳng \(y = {y_0}\) là TCN của đồ thị hàm số nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\).

- Đường thẳng \(x = {x_0}\) là TCĐ của đồ thị hàm số nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to {x_0}^ + } y =  + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {x_0}^ + } y =  - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {x_0}^ - } y =  + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {x_0}^ - } y =  - \infty \).

Giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{2x - 1}}{{x - 3}} = \, - \infty ;\,\,\,\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{2x - 1}}{{x - 3}} =  + \infty \).

Vậy \(x = 3\) là TCĐ của đồ thị hàm số.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com