Cho mặt cầu (S) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2}
Cho mặt cầu (S) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 25\) và mặt phẳng \(\left( P \right):\,\,x + 2y + 2z + 6 = 0\). Một hình nón tròn xoay có đáy nằm trên (P), có chiều cao h = 15, có bán kính đáy bằng 5. Hình cầu và hình nón nằm về một phía đối với mặt phẳng (P). Người ta cắt hai hình đó bởi mặt phẳng (Q) có phương trình \(x + 2y + 2z + d = 0\), \(0 < d < 21\) thu được hai thiết diện có tổng diện tích là S. Biết rằng S đạt giá trị lớn nhất khi \(d = \dfrac{a}{b}\), \(a,\,\,b \in {\mathbb{Z}^ + }\) (phân số \(\dfrac{a}{b}\) tối giản). Tính giá trị T = a + b.
Đáp án đúng là: C
Quảng cáo
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












