Trong hình chữ nhật có kích thước \(1 \times 2\) ta lấy \(6{n^2} + 1\) điểm với \(n\) là số nguyên
Trong hình chữ nhật có kích thước \(1 \times 2\) ta lấy \(6{n^2} + 1\) điểm với \(n\) là số nguyên dương. Chứng minh rằng tồn tại một hình tròn có bán kính \(\dfrac{1}{n}\) chứa không ít hơn \(4\) trong số các điểm đã cho.
Quảng cáo
+ Nguyên lý Dirichlet cơ bản : Nếu nhốt \(n + 1\) con thỏ vào \(n\) cái chuồng thì bao giờ cũng có một cái chuồng chứa ít nhất hai con thỏ.
+ Số thỏ : \(6{n^2} + 1\) thỏ ; Số lồng là : \(2{n^2}\) lồng
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










