Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật \(AB = \sqrt 2 a,\,AD = 2a\), \(SA\) vuông góc
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật \(AB = \sqrt 2 a,\,AD = 2a\), \(SA\) vuông góc với đáy và \(SA = \sqrt 2 a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(SB\) và \(AD\) (tham khảo hình vẽ). Tính cosin của góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {SAC} \right)\)?

Đáp án đúng là: B
Quảng cáo
Cách 1: Gọi \(P,Q\) lần lượt là trung điểm của AB, BC khi đó \(\left( {MPQ} \right)//\left( {SAC} \right)\)\( \Rightarrow \left( {MN,\left( {SAC} \right)} \right) = \left( {MN,\left( {MPQ} \right)} \right)\)
Gọi H là hình chiếu vuông góc của N trên PQ \( \Rightarrow NH \bot \left( {MPQ} \right)\)
Suy ra: \(\left( {MN,\left( {MPQ} \right)} \right) = \angle NMH\)
Cách 2: Sử dụng phương pháp tọa độ hóa: \(A\left( {0;0;0} \right),\,B\left( {\sqrt 2 ;0;0} \right),\,C\left( {\sqrt 2 ;2;0} \right),\,D\left( {0;2;0} \right),\,S\left( {0;0;\sqrt 2 } \right)\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com














