Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = {e^{\sqrt {{x^2} + 1} }}\left( {{e^x} - {e^{ - x}}} \right)\). Có bao nhiêu số

Câu hỏi số 565705:
Vận dụng cao

Cho hàm số \(f\left( x \right) = {e^{\sqrt {{x^2} + 1} }}\left( {{e^x} - {e^{ - x}}} \right)\). Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình \(f\left( {m - 7} \right) + f\left( {\dfrac{{12}}{{m + 1}}} \right) < 0\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:565705
Phương pháp giải

- Biến đổi \(f\left( {m - 7} \right) + f\left( {\dfrac{{12}}{{m + 1}}} \right) < 0 \Leftrightarrow f\left( {m - 7} \right) <  - f\left( {\dfrac{{12}}{{m + 1}}} \right)\).

- Chứng minh f(x) là hàm lẻ, và là hàm đồng biến.

- Giải bất phương trình chứa ẩn ở mẫu tìm m.

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có: \(f\left( { - x} \right) = {e^{\sqrt {{x^2} + 1} }}\left( {{e^{ - x}} - {e^x}} \right) =  - f\left( x \right)\) nên hàm số đã cho là hàm lẻ.

Ta có: \(f\left( x \right) = {e^{\sqrt {{x^2} + 1} }}\left( {{e^x} - {e^{ - x}}} \right) = {e^{\sqrt {{x^2} + 1}  + x}} - {e^{\sqrt {{x^2} + 1}  - x}}\).

\(\begin{array}{l} \Rightarrow f'\left( x \right) = \left( {\dfrac{x}{{\sqrt {{x^2} + 1} }} + 1} \right){e^{\sqrt {{x^2} + 1}  + x}} - \left( {\dfrac{x}{{\sqrt {{x^2} + 1} }} - 1} \right){e^{\sqrt {{x^2} + 1}  - x}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{x + \sqrt {{x^2} + 1} }}{{\sqrt {{x^2} + 1} }}{e^{\sqrt {{x^2} + 1}  + x}} + \dfrac{{\sqrt {{x^2} + 1}  - x}}{{\sqrt {{x^2} + 1} }}{e^{\sqrt {{x^2} + 1}  - x}}\end{array}\)

Ta có:

\(\begin{array}{l}\sqrt {{x^2} + 1}  > \sqrt {{x^2}}  = \left| x \right|\\ \Leftrightarrow  - \sqrt {{x^2} + 1}  < x < \sqrt {{x^2} + 1} \\ \Rightarrow \left\{ \begin{array}{l}x + \sqrt {{x^2} + 1}  > 0\\\sqrt {{x^2} + 1}  - x > 0\end{array} \right.\end{array}\)

Do đó \(f'\left( x \right) > 0\,\,\forall x \in \mathbb{R}\) \( \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}\).

Theo bài ra ta có: \(f\left( {m - 7} \right) + f\left( {\dfrac{{12}}{{m + 1}}} \right) < 0 \Leftrightarrow f\left( {m - 7} \right) <  - f\left( {\dfrac{{12}}{{m + 1}}} \right)\)

Mà \(f\left( x \right)\) là hàm lẻ (cmt) \( \Rightarrow  - f\left( {\dfrac{{12}}{{m + 1}}} \right) = f\left( {\dfrac{{ - 12}}{{m + 1}}} \right)\).

\( \Rightarrow f\left( {m - 7} \right) < f\left( {\dfrac{{ - 12}}{{m + 1}}} \right)\)

Mà hàm số f(x) đồng biến trên \(\mathbb{R}\) \( \Rightarrow m - 7 < \dfrac{{ - 12}}{{m + 1}} \Leftrightarrow \dfrac{{{m^2} - 6m + 5}}{{m + 1}} < 0 \Leftrightarrow \left[ \begin{array}{l}1 < m < 5\\m <  - 1\end{array} \right.\).

Kết hợp điều kiện \(m \in {\mathbb{Z}^ + } \Rightarrow m \in \left\{ {2;3;4} \right\}\).

Vậy có 3 giá trị m thỏa mãn yêu cầu.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com