Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\,\,\left( {a \ne 0} \right)\) có đồ thị

Câu hỏi số 565712:
Vận dụng cao

Cho hàm số \(y = f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\,\,\left( {a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng \(\left( C \right)\) cắt trục hoành tại bốn điểm phân biệt là \(A\left( {{x_1};0} \right),\,\,B\left( {{x_2};0} \right)\), \(C\left( {{x_3};0} \right),\,\,D\left( {{x_4};0} \right)\), với \({x_1},{x_2},{x_3},{x_4}\) theo thứ tự lập thành cấp số cộng và hai tiếp tuyến của \(\left( C \right)\) tại A, B vuông góc với nhau. Khi đó, giá trị của biểu thức \(P = {\left[ {f'\left( {{x_3}} \right) + f'\left( {{x_4}} \right)} \right]^{2022}}\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:565712
Phương pháp giải

- Vì \(\left( C \right)\) cắt trục hoành tại bốn điểm phân biệt \(A\left( {{x_1};0} \right),\,\,B\left( {{x_2};0} \right)\), \(C\left( {{x_3};0} \right),\,\,D\left( {{x_4};0} \right)\) nên

\(f\left( x \right) = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right)\)

- Gọi d là công sai của cấp số cộng ta có: \({x_i} - {x_{i'}} = d\left( {i - i'} \right)\).

- Tính \(f'\left( {{x_i}} \right)\) theo a và d.

- Vì tiếp tuyến tại A, B vuông góc với nhau nên \(f'\left( {{x_1}} \right).f'\left( {{x_2}} \right) =  - 1\).

- Tính \(P = {\left[ {f'\left( {{x_3}} \right) + f'\left( {{x_4}} \right)} \right]^{2022}}\).

Giải chi tiết

Vì \(\left( C \right)\) cắt trục hoành tại bốn điểm phân biệt \(A\left( {{x_1};0} \right),\,\,B\left( {{x_2};0} \right)\), \(C\left( {{x_3};0} \right),\,\,D\left( {{x_4};0} \right)\) nên

\(f\left( x \right) = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right)\)

Gọi d là công sai của cấp số cộng ta có: \({x_i} - {x_{i'}} = d\left( {i - i'} \right)\).

Khi đó ta có:

\(\begin{array}{l}f'\left( x \right) = a\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right) + \left( {x - {x_1}} \right)\left[ {a\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right)} \right]'\\ \Rightarrow f'\left( {{x_1}} \right) =  - 6a{d^3}\end{array}\)

Tương tự ta có: \(\left\{ \begin{array}{l}f'\left( {{x_2}} \right) = 2a{d^3}\\f'\left( {{x_3}} \right) =  - 2a{d^3}\\f'\left( {{x_4}} \right) = 6a{d^3}\end{array} \right.\).

Vì tiếp tuyến tại A, B vuông góc với nhau nên \(f'\left( {{x_1}} \right).f'\left( {{x_2}} \right) =  - 1 \Leftrightarrow {a^2}{d^6} = \dfrac{1}{{12}}\).

Vậy \(P = {\left[ {f'\left( {{x_3}} \right) + f'\left( {{x_4}} \right)} \right]^{2022}} = {\left( {4a{d^3}} \right)^{2022}} = {\left( {16{a^2}{d^6}} \right)^{1011}} = {\left( {\dfrac{4}{3}} \right)^{1011}}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com