Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) + {\log _2}\left( {x - 1}

Câu hỏi số 569917:
Thông hiểu

Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) + {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:569917
Phương pháp giải

Đưa bất phương trình về phương trình logarit cơ bản với cơ số 2.

Giải chi tiết

ĐKXĐ: \(x > 1\).

Ta có:

\(\begin{array}{l}{\log _{\frac{1}{2}}}\left( {x - 1} \right) + {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\\ \Leftrightarrow  - {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\\ \Leftrightarrow {\log _2}\left( {x + 3} \right) \ge 1 \Leftrightarrow x + 3 \ge 2 \Leftrightarrow x \ge  - 1.\end{array}\)

Tập nghiệm của BPT đã cho là: \(\left({  1; + \infty } \right)\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com