Cho đồ thị \(\left( C \right):y = {x^3} - 3{x^2}\). Có bao nhiêu số nguyên \(b \in \left( { -
Cho đồ thị \(\left( C \right):y = {x^3} - 3{x^2}\). Có bao nhiêu số nguyên \(b \in \left( { - 10;10} \right)\) để có đúng một tiếp tuyến của (C) đi qua điểm \(B\left( {0;b} \right)\).
Đáp án đúng là: D
Quảng cáo
Viết phương trình đường thẳng đi qua \(M\left( {{x_0};{y_0}} \right)\) và có hệ số góc là \(k\) là: \(y = k\left( {x - {x_0}} \right) + {y_0}\)
Điều kiện để đường thẳng trở thành tiếp tuyến khi hệ phương trình sau có nghiệm \(\left\{ \begin{array}{l}f\left( x \right) = k\left( {x - {x_0}} \right) + {y_0}\\f'\left( x \right) = k\end{array} \right.\)
Suy ra phương trình: \(f\left( x \right) = f'\left( x \right)\left( {x - {x_0}} \right) + {y_0}\) (*)
Đổi thành bài toán: Tìm m để phương trình (*) có hai nghiệm phân biệt
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













