Cho hình vẽ, biết \(\angle xBA = {48^o},\,\angle BCD = {48^o},\,\angle BAD = {135^o}.\) a) Chứng minh
Cho hình vẽ, biết \(\angle xBA = {48^o},\,\angle BCD = {48^o},\,\angle BAD = {135^o}.\)
a) Chứng minh \(AB\,//\,CD.\)
b) Hãy tính số đo góc \(\angle ADC.\)
Quảng cáo
- Nếu một đường thẳng cắt hai đường thẳng song song thì:
+ Hai góc so le trong bằng nhau;
+ Hai góc đồng vị bằng nhau.
- Dấu hiệu nhận biết hai đường thẳng song song: Nếu đường thẳng c cắt đường thẳng phân biệt ab, và trong các góc tạo thành có một cặp góc so le trong bằng nhau hoặc một cặp góc đồng vị bằng hai thì a và b song song với nhau.
a) Ta có \(\angle xBA = {48^o},\,\angle BCD = {48^o}\,\left( {gt} \right)\)
\( \Rightarrow \angle xBA = \angle BCD\,\left( { = {{48}^o}} \right)\)
Mà hai góc trên ở vị trí đồng vị
\( \Rightarrow AB\,//\,CD\,\left( {dhnb} \right)\)
b) Vì \(AB\,//\,CD\,\left( {cmt} \right) \Rightarrow \angle yAB = \angle ADC\) (hai góc đồng vị)
Ta lại có:
\(\angle yAB + \angle BAD = {180^o}\) (hai góc kề bù)
\(\angle yAB + {135^o} = {180^o}\, \Rightarrow \angle yAB = {180^o} - {135^o} = {45^o}\)
\( \Rightarrow \angle ADC = \angle yAB = {45^o}.\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com