Ở hình vẽ bên dưới có \(AB\) và \(CD\) cắt nhau tại \(O,Ot\) là tia phân giác của góc
Ở hình vẽ bên dưới có \(AB\) và \(CD\) cắt nhau tại \(O,Ot\) là tia phân giác của góc \(BOC\)\(,\angle AOC - \angle BOC = {68^0}\). Số đo góc \(BOt\) là:
Đáp án đúng là: C
Hai góc kề bù có tổng số đo góc bằng \({180^0}\)
Vận dụng tính chất tia phân giác của một góc: \(Ot\) là tia phân giác của \(\angle xOy \Rightarrow \angle xOt = \angle yOt = \dfrac{1}{2}\angle xOy\)
Theo giả thiết: \(\angle AOC - \angle BOC = {68^0} \Rightarrow \angle AOC = \angle BOC + {68^0}\)
Vì \(\angle AOC\) và \(\angle BOC\) là hai góc kề bù nên \(\angle AOC + \angle BOC = {180^0}\)
\(\begin{array}{l} \Rightarrow \angle BOC + {68^0} + \angle BOC = {180^0}\\ \Rightarrow 2\angle BOC = {180^0} - {68^0}\\ \Rightarrow 2\angle BOC = {112^0}\\ \Rightarrow \angle BOC = {112^0}:2\\ \Rightarrow \angle BOC = {56^0}\end{array}\)
Vì \(Ot\) là tia phân giác của góc \(BOC\) nên \(\angle BOt = \dfrac{1}{2}\angle BOC\) (tính chất tia phân giác của một góc)
\( \Rightarrow \angle BOt = \dfrac{1}{2}{.56^0} = {28^0}\)
Vậy \(\angle BOt = {28^0}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com