Giải phương trình: \({\left( {x - 1} \right)^2} - x + 1 = 0\)
Giải phương trình: \({\left( {x - 1} \right)^2} - x + 1 = 0\)
Quảng cáo
Đưa phương trình ban đầu về phương trình tích: \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)
\(\begin{array}{l}\,\,\,\,\,\,\,\,{\left( {x - 1} \right)^2} - x + 1 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} - \left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 1 - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\end{array}\)
Vậy phương trình có tập nghiệm là \(S = \left\{ {1;2} \right\}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com