Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tích phân \(I = \int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} \) bằng

Câu hỏi số 595214:
Thông hiểu

Tích phân \(I = \int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} \) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:595214
Phương pháp giải

Đặt x2 + 3 = t.

Giải chi tiết

Đặt x2 + 3 = t.

Vi phân: 2xdx = dt.

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 3\\x = 2 \Rightarrow t = 7\end{array} \right.\).

Thay: \(I = \dfrac{1}{2}\int\limits_3^7 {\dfrac{{dt}}{t}}  = \left. {\dfrac{1}{2}\ln \left| t \right|} \right|_3^7 = \dfrac{1}{2}\left( {\ln 7 - \ln 3} \right) = \dfrac{1}{2}\ln \dfrac{7}{3}.\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com