Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội (HSA) và ĐGNL TP.HCM (V-ACT) đợt 3 ngày 18-19/01/2025 ↪ Thi ngay ĐGNL Hà Nội (HSA) ↪ Thi ngay ĐGNL TP.HCM (V-ACT)
Giỏ hàng của tôi

a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1}  + \sqrt {x - 2} \)b) Giải hệ

Câu hỏi số 595534:
Thông hiểu

a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1}  + \sqrt {x - 2} \)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right.\)

c) Giải phương trình: \({x^2} - 3x - 4 = 0\)

Quảng cáo

Câu hỏi:595534
Phương pháp giải

a) Biểu thức \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\)

b) Sử dụng phương pháp cộng đại số, tìm được nghiệm \(x\)

Sử dụng phương pháp thế, tìm được nghiệm \(y\)

Kết luận nghiệm \(\left( {x;y} \right)\) của hệ phương trình.

c) Vận dụng hệ quả của định lí Vi – ét: Nếu \(a - b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = 1;{x_2} = \dfrac{{ - c}}{a}\).

Giải chi tiết

a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1}  + \sqrt {x - 2} \)

ĐKXĐ: \(\left\{ \begin{array}{l}x + 1 \ge 0\\x - 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \ge 2\end{array} \right. \Leftrightarrow x \ge 2\)

Vậy điều kiện xác định của biểu thức A là \(x \ge 2\)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right.\)

\(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y = 3\\4x + 2y = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 15\\x - 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3 - 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 0\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;0} \right)\)

c) Giải phương trình: \({x^2} - 3x - 4 = 0\)

Ta có: \(1 - \left( { - 3} \right) + \left( { - 4} \right) = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - 1;{x_2} = 4\)

Vậy phương trình có tập nghiệm là \(S = \left\{ { - 1;4} \right\}\)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com