a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1} + \sqrt {x - 2} \)b) Giải hệ
a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1} + \sqrt {x - 2} \)
b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right.\)
c) Giải phương trình: \({x^2} - 3x - 4 = 0\)
Quảng cáo
a) Biểu thức \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\)
b) Sử dụng phương pháp cộng đại số, tìm được nghiệm \(x\)
Sử dụng phương pháp thế, tìm được nghiệm \(y\)
Kết luận nghiệm \(\left( {x;y} \right)\) của hệ phương trình.
c) Vận dụng hệ quả của định lí Vi – ét: Nếu \(a - b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = 1;{x_2} = \dfrac{{ - c}}{a}\).
a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1} + \sqrt {x - 2} \)
ĐKXĐ: \(\left\{ \begin{array}{l}x + 1 \ge 0\\x - 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x \ge 2\end{array} \right. \Leftrightarrow x \ge 2\)
Vậy điều kiện xác định của biểu thức A là \(x \ge 2\)
b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right.\)
\(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y = 3\\4x + 2y = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 15\\x - 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3 - 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 0\end{array} \right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;0} \right)\)
c) Giải phương trình: \({x^2} - 3x - 4 = 0\)
Ta có: \(1 - \left( { - 3} \right) + \left( { - 4} \right) = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 1;{x_2} = 4\)
Vậy phương trình có tập nghiệm là \(S = \left\{ { - 1;4} \right\}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com