Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1}  + \sqrt {x - 2} \)b) Giải hệ

Câu hỏi số 595534:
Thông hiểu

a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1}  + \sqrt {x - 2} \)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right.\)

c) Giải phương trình: \({x^2} - 3x - 4 = 0\)

Quảng cáo

Câu hỏi:595534
Phương pháp giải

a) Biểu thức \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\)

b) Sử dụng phương pháp cộng đại số, tìm được nghiệm \(x\)

Sử dụng phương pháp thế, tìm được nghiệm \(y\)

Kết luận nghiệm \(\left( {x;y} \right)\) của hệ phương trình.

c) Vận dụng hệ quả của định lí Vi – ét: Nếu \(a - b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = 1;{x_2} = \dfrac{{ - c}}{a}\).

Giải chi tiết

a) Tìm điều kiện xác định của biểu thức: \(A = \sqrt {x + 1}  + \sqrt {x - 2} \)

ĐKXĐ: \(\left\{ \begin{array}{l}x + 1 \ge 0\\x - 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \ge 2\end{array} \right. \Leftrightarrow x \ge 2\)

Vậy điều kiện xác định của biểu thức A là \(x \ge 2\)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right.\)

\(\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y = 3\\4x + 2y = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 15\\x - 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3 - 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 0\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;0} \right)\)

c) Giải phương trình: \({x^2} - 3x - 4 = 0\)

Ta có: \(1 - \left( { - 3} \right) + \left( { - 4} \right) = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - 1;{x_2} = 4\)

Vậy phương trình có tập nghiệm là \(S = \left\{ { - 1;4} \right\}\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com