Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Bảo Anh và Quang ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/11 đến

Câu hỏi số 595630:
Vận dụng

Bảo Anh và Quang ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/11 đến ngày 15/11 ở bảng sau:

a) Hãy tìm phương sai của từng dãy số liệu.

b) Sau khi bỏ đi các giá trị ngoại lệ (nếu có), hãy so sánh, số lượng tin nhắn mỗi bạn nhận được theo số trung bình và số trung vị.

Quảng cáo

Câu hỏi:595630
Phương pháp giải

a) +) Số trung bình \(\bar x = \dfrac{{{x_1} + {x_2} + ... + {x_n}}}{n}\).

+) Phương sai: \({s^2} = \dfrac{1}{n}\left( {x_1^2 + x_2^2 + ... + x_n^2} \right) - {\bar x^2}\)

b) +) Khoảng tứ phân vị, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba và tứ phân vị thứ nhất, tức là

ΔQ = Q3 – Q1.

+) Giá trị ngoại lệ: Giá trị ngoại lệ x thỏa mãn x > Q3 + 1,5∆Q hoặc x < Q1 − 1,5∆Q.

Bỏ giá trị ngoại lệ (nếu có), tính lại số trung bình, tìm số trung vị của 2 mẫu số liệu và so sánh.

Giải chi tiết

a) n = 15.

+ Bảo Anh:

Số trung bình:

\({\bar x_1} = \dfrac{{2 + 4 + 3 + 4 + 6 + 2 + 3 + 2 + 4 + 5 + 3 + 4 + 6 + 7 + 3}}{{15}} = \dfrac{{58}}{{15}} \approx 3,87\).

Phương sai:

\(s_1^2 = \dfrac{1}{{15}}\left( {{{3.2}^2} + {{4.3}^2} + {{4.4}^2} + {5^2} + {{2.6}^2} + {7^2}} \right) - \bar x_1^2 = 2,25\).

+ Quang:

Số trung bình:

\({\bar x_2} = \dfrac{{3 + 4 + 1 + 2 + 2 + 3 + 4 + 1 + 2 + 30 + 2 + 2 + 2 + 3 + 6}}{{15}} = \dfrac{{67}}{{15}} \approx 4,47\)

Phương sai:

\(s_2^2 = \dfrac{1}{{15}}\left( {{{2.1}^2} + {{6.2}^2} + {{3.3}^2} + {{2.4}^2} + {6^2} + {{30}^2}} \right) - \bar x_2^2 = 48,12\).

b)

+ Bảo Anh:

Áp dụng các bước tìm tứ phân vị ta tìm được: Q1 = 3, Q3 = 5.

\( \Rightarrow {\Delta _Q}\) = Q3 – Q1 = 5 – 3 = 2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 5 + 1,5.2 = 8

Hoặc x < Q1 − 1,5∆Q = 3 − 1,5.2 = 0

Vậy đối chiếu mẫu số liệu của Khuê suy ra không có giá trị ngoại lệ.

+ Quang:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 2, Q3 = 4

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 4 – 2 = 2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 4 + 1,5.2 = 7

Hoặc x < Q1 − 1,5∆Q = 2 − 1,5.2 = −1

Vậy đối chiếu mẫu số liệu của Trọng suy ra giá trị ngoại lệ là 30.

Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của Khuê là:

\({\bar x_1} = \dfrac{{2 + 4 + 3 + 4 + 6 + 2 + 3 + 2 + 4 + 5 + 3 + 4 + 6 + 7 + 3}}{{15}} \approx 3,87\)

Của Quang là:

\({\bar x_2} = \dfrac{{3 + 4 + 1 + 2 + 2 + 3 + 4 + 1 + 2 + 2 + 2 + 2 + 3 + 6}}{{14}} \approx 2,64.\)

Khi đó trung vị của mẫu của Bảo Anh là 4 (Với n = 15 là số lẻ)

Và số trung vị của Quang là (2 + 2) : 2 = 2 (Với n = 14 là số chẵn).

Vậy so sánh theo cả số trung bình và số trung vị thì Bảo Anh có nhiều tin nhắn mỗi ngày hơn Quang.

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com