Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

\(I = \int\limits_0^{\frac{\pi }{2}} {\left( {{{\cos }^3}x - 1} \right){{\cos }^2}xdx} \).

Câu hỏi số 596889:
Vận dụng

\(I = \int\limits_0^{\frac{\pi }{2}} {\left( {{{\cos }^3}x - 1} \right){{\cos }^2}xdx} \).

Quảng cáo

Câu hỏi:596889
Giải chi tiết

\(\begin{array}{l}I = \int\limits_0^{\frac{\pi }{2}} {\left( {{{\cos }^3}x - 1} \right){{\cos }^2}xdx} \\\,\,\,\, = \int\limits_0^{\frac{\pi }{2}} {\left( {{{\cos }^5}x - {{\cos }^2}x} \right)dx} \\\,\,\,\, = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^5}xdx}  - \int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}xdx} \end{array}\)

+) \(A = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^5}xdx}  = \int\limits_0^1 {{{\left( {1 - {{\sin }^2}x} \right)}^2}\cos xdx} \).

Đặt \(\sin x = t \Rightarrow \cos xdx = dt\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\).

\(\begin{array}{l} \Rightarrow A = \int\limits_0^1 {{{\left( {1 - {t^2}} \right)}^2}dt}  = \int\limits_0^1 {\left( {1 - 2{t^2} + {t^4}} \right)dt} \\\,\,\,\,\,\,\,\,\,\,\, = \left. {\left( {t - \dfrac{{2{t^3}}}{3} + \dfrac{{{t^5}}}{5}} \right)} \right|_0^1 = \dfrac{8}{{15}}.\end{array}\)

\(\begin{array}{l} + )\,\,B = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}xdx}  = \int\limits_0^{\frac{\pi }{2}} {\dfrac{1}{2}\left( {1 + \cos 2x} \right)dx} \\\,\,\,\,\,\,\,\,\,\,\,\, = \left. {\dfrac{1}{2}\left( {x + \dfrac{1}{2}\sin 2x} \right)} \right|_0^{\frac{\pi }{2}} = \dfrac{\pi }{4}\end{array}\)

Vậy \(I = A - B = \dfrac{8}{{15}} - \dfrac{\pi }{4}.\)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com