Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(2\left| {{z_1}} \right| = 2\left| {{z_2}} \right| = \left|
Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(2\left| {{z_1}} \right| = 2\left| {{z_2}} \right| = \left| {{z_3}} \right| = 2\) và \(\left( {{z_1} + {z_2}} \right){z_3} = 2{z_1}{z_2}\). Gọi A, B, C lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng
Đáp án đúng là: B
Quảng cáo
Chứng minh \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 1\) và \(\left| {{z_3}} \right| = 2\).
Chứng minh \(\left| {{z_1} + {z_2}} \right| = 1\).
Từ đẳng thức \({\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} = 2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right)\) tính AB.
Từ giả thiết \(\left( {{z_1} + {z_2}} \right){z_3} = 2{z_1}{z_2}\) tính AC.
Từ gải thiết \(\left( {{z_1} + {z_2}} \right){z_3} = 2{z_1}{z_2}\) tính BC.
Chứng minh tam giác ABC đều và tính diện tích tam giác đều.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












