Có \(5\) đấu thủ thi đấu cờ, mỗi người đấu một trận với mỗi đối thủ khác nhau. Chứng
Có \(5\) đấu thủ thi đấu cờ, mỗi người đấu một trận với mỗi đối thủ khác nhau. Chứng minh rằng trong suốt thời gian thi đấu, luôn tồn tại hai đấu thủ có số trận đã đấu bằng nhau.
Quảng cáo
- Sử dụng nguyên lý Dirichlet cơ bản: Nếu nhốt \(n\) thỏ vào \(m\) lồng, với \(n > m,\) nghĩa là số thỏ nhiều hơn số lồng, thì ít nhất cũng có một lồng nhốt không ít hơn hai con thỏ.
- Phân tích: Ta thành lập được các cái lồng đó là các lồng chứa số trận đấu của các đấu thủ (có \(4\) lồng), số đấu thủ ta coi là các con thỏ.
>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










