Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(n\) là số nguyên dương thỏa mãn \(C_n^2 - 4C_n^1 - 11 = 0\). Hệ số của số hạng chứa

Câu hỏi số 599448:
Vận dụng

Cho \(n\) là số nguyên dương thỏa mãn \(C_n^2 - 4C_n^1 - 11 = 0\). Hệ số của số hạng chứa \({x^9}\) trong khai triển nhị thức Niu-tơn của hàm số \({\left( {{x^4} - \dfrac{2}{{{x^3}}}} \right)^n}\left( {x \ne 0} \right)\) bằng:

Quảng cáo

Câu hỏi:599448
Phương pháp giải

Áp dụng công thức tổ hợp và nhị thức Niu-tơn.

Giải chi tiết

Ta có: \(C_n^2 - 4C_n^1 - 11 = 0\,\,\left( {n \ge 2,\,\,n \in \mathbb{N}} \right)\)\( \Leftrightarrow \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} - 4n - 11 = 0\)

\( \Leftrightarrow n\left( {n - 1} \right) - 8n - 22 = 0\) \( \Leftrightarrow {n^2} - 9n - 22 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n = 11\,\,\left( {tm} \right)\\n =  - 2\,\,\left( {ktm} \right)\end{array} \right.\)

Khi đó \(P = {\left( {{x^4} - \dfrac{2}{{{x^3}}}} \right)^n} = {\left( {{x^4} - \dfrac{2}{{{x^3}}}} \right)^{11}}\).

\( \Rightarrow P = \sum\limits_{k = 0}^{11} {C_{11}^k{{\left( {{x^4}} \right)}^{11 - k}}.\dfrac{{{{\left( { - 2} \right)}^k}}}{{{x^{3k}}}}} \)\( = \sum\limits_{k = 0}^{11} {C_{11}^k.{{\left( { - 2} \right)}^k}.{x^{44 - 7k}}} \) \(\left( {0 \le k \le 11,\,\,k \in \mathbb{N}} \right).\)  

Hệ số của \({x^9}\) ứng với \(44 - 7k = 9 \Leftrightarrow k = 5\,\,\,\left( {tm} \right)\)

Vậy hệ số của \({x^9}\) trong khai triển trên là \(C_{11}^5.{\left( { - 2} \right)^5} =  - 14784.\)

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com