Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng chứa \({x^{29}}\) trong khai triển theo nhị thức Niu-tơn của \({\left( {{x^2} - x}

Câu hỏi số 599618:
Vận dụng

Tìm số hạng chứa \({x^{29}}\) trong khai triển theo nhị thức Niu-tơn của \({\left( {{x^2} - x} \right)^n},\) biết \(n\) là số nguyên dương thỏa mãn \(2C_n^2 - 19n = 0.\)  

Quảng cáo

Câu hỏi:599618
Phương pháp giải

Giải phương trình tìm \(n\).

Sử dụng công thức tính số hạng tổng quát tìm số hạng chứa \({x^{29}}\).

Giải chi tiết

Ta có:

\(2C_n^2 - 19n = 0\) \( \Leftrightarrow 2.\dfrac{{n\left( {n - 1} \right)}}{2} - 19n = 0\) \( \Leftrightarrow {n^2} - n - 19n = 0\) \( \Leftrightarrow {n^2} - 20n = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n = 0\left( {loai} \right)\\n = 20\left( {TM} \right)\end{array} \right.\)

Số hạng tổng quát \(C_{20}^k{\left( {{x^2}} \right)^{20 - k}}.{(-x)^k} = C_{20}^k(-1)^k{x^{40 - k}}\)

Số hạng chứa \({x^{29}}\) ứng với \(40 - k = 29 \Leftrightarrow k = 11\).

Vậy số hạng đó là \(-C_{20}^{11}{x^{29}}\).

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com