Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \sqrt {\left( {m - 2} \right){x^2} -

Câu hỏi số 600756:
Vận dụng

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \sqrt {\left( {m - 2} \right){x^2} - 2\left( {m - 3} \right)x + m - 1} \) có tập xác định là \(\mathbb{R}\)?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:600756
Phương pháp giải

Hàm số \(\sqrt {f\left( x \right)} \) xác định khi \(f\left( x \right) \ge 0\).

\(f\left( x \right) = a{x^2} + bx + c \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) \( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\) khi và chỉ khi \(f\left( x \right) = \left( {m - 2} \right){x^2} - 2\left( {m - 3} \right)x + m - 1 \ge 0,\forall x \in \mathbb{R}\)

* Xét \(m - 2 = 0 \Leftrightarrow m = 2\) thì \(f\left( x \right) = 2x + 1 \ge 0 \Leftrightarrow x \ge  - \dfrac{1}{2}\), loại \(m = 2\).

* Xét \(m \ne 2\) ta có:

\(\left( {m - 2} \right){x^2} - 2\left( {m - 3} \right)x + m - 1 \ge 0,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 2 > 0\\{\left( {m - 3} \right)^2} - \left( {m - 2} \right)\left( {m - 1} \right) \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m > 2\\m \ge \dfrac{7}{3}\end{array} \right. \Leftrightarrow m \ge \dfrac{7}{3}\)

Vậy \(m \ge \dfrac{7}{3}\).

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com