Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó chứng minh tam giác

Câu hỏi số 605373:
Vận dụng

 Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó chứng minh tam giác \(ABC\) cân tại A.

Quảng cáo

Câu hỏi:605373
Phương pháp giải

+ Sử dụng tính chất về đường trung tuyến của tam giác

+ Chứng minh hai tam giác bằng nhau \(\Delta BGE = \Delta CGD\left( {c - g - c} \right)\)

+ Từ đó suy ra tính chất của tam giác \(ABC.\)

Giải chi tiết

Hai đường trung tuyến \(BD;CE\) cắt nhau tại \(G\) suy ra \(G\) là trọng tâm tam giác \(ABC.\)

Suy ra \(BG = \frac{2}{3}BD;\,CG = \frac{2}{3}CE\) mà \(BD = CE \Rightarrow \) \(BG = CG.\) Từ đó \(BD - BG = CE - CG \Rightarrow GD = GE\)

Xét tam giác \(BGE\) và tam giác \(CGD\) có

+ \(BG = CG\)

+ \(\widehat {BGE} = \widehat {CGD}\)  (đối đỉnh)

+ \(GD = GE\)

Nên \(\Delta BGE = \Delta CGD\left( {c - g - c} \right)\) suy ra \(BE = CD \Rightarrow \frac{1}{2}AB = \frac{1}{2}AC\) do đó \(AB = AC\) hay tam giác \(ABC\) cân tại \(A.\)

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com