Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình \(3\sin x + 2\cos x = 2 + 3\tan x\)

Câu hỏi số 605714:
Vận dụng

Giải phương trình \(3\sin x + 2\cos x = 2 + 3\tan x\)

Quảng cáo

Câu hỏi:605714
Giải chi tiết

ĐK: \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l}3\sin x + 2\cos x = 2 + 3\tan x\\ \Leftrightarrow 3\sin x + 2\cos x = 2 + 3\dfrac{{\sin x}}{{\cos x}}\\ \Leftrightarrow 3\sin x\cos x + 2{\cos ^2}x = 2\cos x + 3\sin x\\ \Leftrightarrow 3\sin x\cos x - 3\sin x + 2{\cos ^2}x - 2\cos x = 0\\ \Leftrightarrow 3\sin x\left( {\cos x - 1} \right) + 2\cos x\left( {\cos x - 1} \right) = 0\\ \Leftrightarrow \left( {3\sin x + 2\cos x} \right)\left( {\cos x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3\sin x + 2\cos x = 0\,\,\left( 1 \right)\\\cos x = 1 \Leftrightarrow x = k2\pi \end{array} \right.\\\left( 1 \right) \Leftrightarrow 3\tan x + 2 = 0\\ \Leftrightarrow \tan x =  - \dfrac{2}{3}\\ \Leftrightarrow x = \arctan \left( { - \dfrac{2}{3}} \right) + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com