a) Giải phương trình: \({x^2} + 2x - 8 = 0\).b) Tìm các giá trị của tham số k để đường thẳng
a) Giải phương trình: \({x^2} + 2x - 8 = 0\).
b) Tìm các giá trị của tham số k để đường thẳng \({d_1}:y = \left( {k - 1} \right)x + k\) song song với đường thẳng \({d_2}:y = 3x - 12\).
c) Tìm các giá trị của tham số m để đường thẳng \(d:y = - x + m + 1\) cắt Parabol \(\left( P \right):y = {x^2}\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn điều kiện: \(x_1^2 - {x_2} - 4m + 1 = 0\).
Quảng cáo
a) Giải phương trình bằng công thức nghiệm
b) \({d_1}\parallel d{ & _2} \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\)
c) Xét phương trình hoành độ giao điểm của (P) và (d), tìm điều kiện để phương trình có hai nghiệm phân biệt, áp dụng hệ thức Vi-et.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










