Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC vuông tại A.  a) Tia phân giác của góc B cắt cạnh AC ở D. Kẻ DE vuông góc với BC

Câu hỏi số 612914:
Vận dụng

Cho tam giác ABC vuông tại A. 

a) Tia phân giác của góc B cắt cạnh AC ở D. Kẻ DE vuông góc với BC tại E.

Chứng minh rằng ΔABD = ΔEBD.

b) So sánh AD và DC.

c) Tia ED cắt BA tại G. Gọi I là trung điểm GC. Chứng minh rằng B, D, I thẳng hàng.

Quảng cáo

Câu hỏi:612914
Phương pháp giải

Sử dụng tính chất tia phân giác, các phương pháp chứng minh hai tam giác vuông bằng nhau, mối quan hệ giữa cạnh và góc trong tam giác, tính chất của tam giác cân.

Giải chi tiết

 

a) Chứng minh rằng ΔABD = ΔEBD.

Xét hai tam giác vuông ΔABD và ΔEBD ta có:

\(\angle A = \angle E = {90^0}\)

AD = DE (vì BD là tia phân giác)

BD cạnh chung

Suy ra ΔABD = ΔEBD (cạnh huyền – cạnh góc vuông) \( \Rightarrow \)AD = DE, BA = BE (cạnh tương ứng) (1)

b) So sánh AD và DC

Xét ΔDEC vuông tại E ta có: DC > DE

Lại có AD = DE (cmt)

\( \Rightarrow \)DC > AD

c) Chứng minh rằng B, D, I thẳng hàng.

Xét ΔBGC có AC \( \bot \) AB, GE \( \bot \) AC

Suy ra D là trực tâm của ΔBGC.(2)

Xét hai tam giác vuông ΔADG và ΔEDC ta có:

\(\angle \)ADG = \(\angle \)EDC (đối đỉnh)

\(\angle A = \angle E = \angle {90^0}\)

AD = DE (cm câu b))

Suy ra ΔADG = ΔEDC (cạnh gv – góc nhọn)

\( \Rightarrow \)AG = EC (cạnh tương ứng)(3)

từ (1), (3) suy ra BA +AG  = BE + EC\( \Leftrightarrow \) BG = BC

Vậy ΔBGC là tam giác cân tại B.  (4)

từ (2), (4) suy ra BD là đường trung tuyến của tam giác ΔBGC. Hay B, D, I thẳng hàng. (đpcm)

 

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com