Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y =  - \dfrac{1}{3}m{x^3} + \left( {m - 1} \right){x^2} - mx + 3\), có đạo hàm là y’. Tìm

Câu hỏi số 621144:
Vận dụng

Cho hàm số \(y =  - \dfrac{1}{3}m{x^3} + \left( {m - 1} \right){x^2} - mx + 3\), có đạo hàm là y’. Tìm tất cả các giá trị của m để phương trình \(y' = 0\) có hai nghiệm phân biệt là \({x_1},\,\,{x_2}\) thoả mãn \(x_1^2 + x_2^2 = 6.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:621144
Phương pháp giải

\(\left( {{x^n}} \right)' = n{x^{n - 1}}\)

Áp dụng định lí Vi-ét.

Giải chi tiết

\(\begin{array}{l}y =  - \dfrac{1}{3}m{x^3} + \left( {m - 1} \right){x^2} - mx + 3\\ \Rightarrow y' =  - m{x^2} + 2\left( {m - 1} \right)x - m = 0\end{array}\)

Để phương trình có hai nghiệm phân biệt \( \Rightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m \ne 0\\{\left( {m - 1} \right)^2} - {m^2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\ - 2m + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m < \dfrac{1}{2}\end{array} \right.\).

Áp dụng định lí Vi-ét: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{2\left( {m - 1} \right)}}{m}\\{x_1}{x_2} = 1\end{array} \right.\)

Ta có: \(x_1^2 + x_2^2 = 6.\)

\(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 6\\ \Leftrightarrow \dfrac{{4{{\left( {m - 1} \right)}^2}}}{{{m^2}}} - 2 = 6\\ \Leftrightarrow \dfrac{{4{{\left( {m - 1} \right)}^2}}}{{{m^2}}} = 8\\ \Leftrightarrow \dfrac{{{{\left( {m - 1} \right)}^2}}}{{{m^2}}} = 2\\ \Leftrightarrow {\left( {m - 1} \right)^2} = 2{m^2}\\ \Leftrightarrow {m^2} - 2m + 1 = 2{m^2}\\ \Leftrightarrow {m^2} + 2m - 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}m =  - 1 + \sqrt 2 \\m =  - 1 - \sqrt 2 \end{array} \right.\,\,\left( {tm} \right)\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com