Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(g\left( x \right) =
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(g\left( x \right) = f'\left( {{x^3} + 2} \right)\) có bảng xét dấu như sau:

Có bao nhiêu số nguyên \(m \in \left[ { - 2023;2023} \right]\) để hàm số \(y = f\left( {x - m} \right)\) đồng biến trên \(\left( { - \infty ;0} \right)\)?
Đáp án đúng là: D
Quảng cáo
Lập bảng xét dấu đạo hàm của hàm số \(y = f\left( {x - m} \right)\).
Từ đó đánh giá m để hàm số \(y = f\left( {x - m} \right)\) đồng biến trên \(\left( { - \infty ;0} \right)\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













